skip to main content


Title: The meaning(s) of place: Identifying the structure of sense of place across a social–ecological landscape
Abstract

Sense of place holds promise to understand how people perceive and respond to social and ecological change; however, using this concept to explore vulnerability and adaptation first depends on identifying the multiple ways people define their relationship with a place.

We introduce the meaning‐dependence framework to account for the broad array of person–place connections within social–ecological landscapes.

We applied this framework to private landowners in the Southern Great Plains of the United States, a working landscape experiencing ecological transformation from grasslands to degraded woodlands.

Using a mail survey, we explored the structure of sense of place based on the relationship between place meanings and place attachment. We employed complementary analytical methods: correlation analysis, ordinary least squares regression, and machine learning through a regression tree and random forest.

Place meanings explained a large amount of variation in place attachment and were characterized by intercorrelations and interactions. Across analyses, experiential meanings reflecting personal psychological connections to one's land were the predominant drivers of landowners' place attachment.Way of lifeemerged as a central meaning for understanding sense of place on private lands.

The meaning‐dependence framework builds on existing research to account for the multiple ways meanings inform human connections to a place. This framework is broadly applicable to any setting and can capture diverse configurations of person–place relationships and increase the utility of sense of place in social–ecological research.

A freePlain Language Summarycan be found within the Supporting Information of this article.

 
more » « less
NSF-PAR ID:
10373586
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
People and Nature
Volume:
2
Issue:
3
ISSN:
2575-8314
Page Range / eLocation ID:
p. 718-733
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to which they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering. 
    more » « less
  2. null (Ed.)
    Research on citizen science programmes has highlighted that they can foster science content and knowledge gain, enhance pro-environmental behaviour and cultivate civic action among participants. Especially in the case of place-based citizen science, which requires hands-on repeated activity in an out-of-door setting through a scientific lens, evidence suggests that some of these outcomes may be linked to the unique people–place relationships and interactions afforded by such programmes. Even still, studies that empirically examine the influence of place on citizen science participant and programme outcomes are scant. This is due, in part, to the methodological challenges involved in interrogating complex aspects of a person's sense of place—aspects like place attachment—the emotional bonds between people and place. Here, an adapted three-dimensional model of place attachment is proposed as a theoretical framework from which place-based citizen science experiences and outcomes might be empirically examined in depth. The model, which posits personal, social and natural environment dimensions of place attachment is contextualized with research findings from the US-based Coastal Observation and Seabird Survey Team (COASST) citizen science programme. Data from COASST suggest that participants do exhibit place attachment in all three dimensions of attachment, categorized within seven unique constructs, although questions remain regarding the unique intensity, make-up (shape) and scale (spatial, social and nature-science) of individual-level attachment along the three central dimensions. Critically, more research is needed to investigate whether the unique place attachment ‘profile’ of participants is a function of personal, social or programmatic variables pre- and post-programme participation. To encourage further scholarship on potential links between the experiences, exposures and programme components of place-based citizen science and the place attachment profiles of participants, this paper includes a brief review of the research opportunities presented by the adapted three-dimensional place attachment model discussed. Advancing this line of inquiry is an important component of broader efforts to understand how sense of place is altered via place-based citizen science and whether or not that is linked to specific programme outputs or participant outcomes in science knowledge, ecological understanding and civic engagement. 
    more » « less
  3. Abstract

    Smallholder farmers are some of the poorest and most food insecure people on Earth. Their high nutritional and economic reliance on home‐grown produce makes them particularly vulnerable to environmental stressors such as pollinator loss or climate change which threaten agricultural productivity. Improving smallholder agriculture in a way that is environmentally sustainable and resilient to climate change is a key challenge of the 21st century.

    Ecological intensification, whereby ecosystem services are managed to increase agricultural productivity, is a promising solution for smallholders. However, smallholder farms are complex socio‐ecological systems with a range of social, ecological and environmental factors interacting to influence ecosystem service provisioning. To truly understand the functioning of a smallholder farm and identify the most effective management options to support household food and nutrition security, a holistic, systems‐based understanding is required.

    In this paper, we propose a network approach to understand, visualise and model the complex interactions occurring among wild species, crops and people on smallholder farms. Specifically, we demonstrate how networks may be used to (a) identify wild species with a key role in supporting, delivering or increasing the resilience of an ecosystem service; (b) quantify the value of an ecosystem service in a way that is relevant to the food and nutrition security of smallholders; and (c) understand the social interactions that influence the management of shared ecosystem services.

    Using a case study based on data from rural Nepal, we demonstrate how this framework can be used to connect wild plants, pollinators and crops to key nutrients consumed by humans. This allows us to quantify the nutritional value of an ecosystem service and identify the wild plants and pollinators involved in its provision, as well as providing a framework to predict the effects of environmental change on human nutrition.

    Our framework identifies mechanistic links between ecosystem services and the nutrients consumed by smallholder farmers and highlights social factors that may influence the management of these services. Applying this framework to smallholder farms in a range of socio‐ecological contexts may provide new, sustainable and equitable solutions to smallholder food and nutrition security.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  4. Abstract

    The field of eco‐evolutionary dynamics is developing rapidly, with a growing number of well‐designed experiments quantifying the impact of evolution on ecological processes and patterns, ranging from population demography to community composition and ecosystem functioning. The key challenge remains to transfer the insights of these proof‐of‐principle experiments to natural settings, where multiple species interact and the dynamics are far more complex than those studied in most experiments.

    Here, we discuss potential pitfalls of building a framework on eco‐evolutionary dynamics that is based on data on single species studied in isolation from interspecific interactions, which can lead to both under‐ and overestimation of the impact of evolution on ecological processes. Underestimation of evolution‐driven ecological changes could occur in a single‐species approach when the focal species is involved in co‐evolutionary dynamics, whereas overestimation might occur due to increased rates of evolution following ecological release of the focal species.

    In order to develop a multi‐species perspective on eco‐evolutionary dynamics, we discuss the need for a broad‐sense definition of “eco‐evolutionary feedbacks” that includes any reciprocal interaction between ecological and evolutionary processes, next to a narrow‐sense definition that refers to interactions that directly feed back on the interactor that evolves.

    We discuss the challenges and opportunities of using more natural settings in eco‐evolutionary studies by gradually adding complexity: (a) multiple interacting species within a guild, (b) food web interactions and (c) evolving metacommunities in multiple habitat patches in a landscape. A literature survey indicated that only a few studies on microbial systems so far developed a truly multi‐species approach in their analysis of eco‐evolutionary dynamics, and mostly so in artificially constructed communities.

    Finally, we provide a road map of methods to study eco‐evolutionary dynamics in more natural settings. Eco‐evolutionary studies involving multiple species are necessarily demanding and might require intensive collaboration among research teams, but are highly needed.

    Aplain language summaryis available for this article.

     
    more » « less
  5. Abstract

    The seeds of many plant species produce mucilage on their surfaces that when wetted and dried, firmly adheres seeds to surfaces and substrates. Previous studies have demonstrated that seed anchorage to the ground can reduce seed predation, although only a few species have thus far been tested.

    Here we investigated whether binding to the ground reduces seed removal by harvester antsPogonomyrmex subdentatus, an important granivore, for 53 species with mucilaginous seeds. We also explored functional traits that associate with seed removal risk to understand the ecological and evolutionary context of this granivory resistance trait.

    Using a field cafeteria choice experiment, we compared harvester ant seed removal of wetted ground‐bound seeds to dry unbound control seeds for these 53 species. We developed a simple assay to score dislodgement force. We examined whether this force, seed mass and seed mucilage production explained the interspecific variation in protection that we observed in field seed removal. We integrated these experiments with a broad scale test of correlates of seed attachment using a previously published dataset of attachment potential of mucilaginous seeds for 432 species, examining correlations of attachment potential with 13 plant traits and the climate characteristics of the species' range.

    Binding to the ground reduced seed removal in 42 of 53 species tested. The benefit increased with seed dislodgement force, which itself increased with mucilage production, but not with seed mass. In the larger dataset, shorter plant life span, higher temperature, more solar radiation, higher humidity, fewer wet days per year and higher seed density correlated positively with the odds of seed attachment. We also found that attachment potential showed a concave down quadratic relationship with latitude, peaking at roughly 30°. No strong evidence that any of the other six predictors correlated with attachment potential was found.

    We demonstrate that protection from granivores is a widespread convergent function of seed mucilage and is associated with mucilage production. We highlight the need for increased mechanistic investigations into this common but poorly studied trait, particularly in relation to functional drivers of the broad patterns we found.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less