skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings
Abstract We complete the computation of all$$\mathbb {Q}$$ Q -rational points on all the 64 maximal Atkin-Lehner quotients$$X_0(N)^*$$ X 0 ( N ) such that the quotient is hyperelliptic. To achieve this, we use a combination of various methods, namely the classical Chabauty–Coleman, elliptic curve Chabauty, quadratic Chabauty, and the bielliptic quadratic Chabauty method (from a forthcoming preprint of the fourth-named author) combined with the Mordell-Weil sieve. Additionally, for square-free levelsN, we classify all$$\mathbb {Q}$$ Q -rational points as cusps, CM points (including their CM field andj-invariants) and exceptional ones. We further indicate how to use this to compute the$$\mathbb {Q}$$ Q -rational points on all of their modular coverings.  more » « less
Award ID(s):
1945452 1946311
PAR ID:
10373621
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Research in Number Theory
Volume:
8
Issue:
4
ISSN:
2522-0160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove that there are$$\gg \frac{X^{\frac{1}{3}}}{(\log X)^2}$$ X 1 3 ( log X ) 2 imaginary quadratic fieldskwith discriminant$$|d_k|\le X$$ | d k | X and an ideal class group of 5-rank at least 2. This improves a result of Byeon, who proved the lower bound$$\gg X^{\frac{1}{4}}$$ X 1 4 in the same setting. We use a method of Howe, Leprévost, and Poonen to construct a genus 2 curveCover$$\mathbb {Q}$$ Q such thatChas a rational Weierstrass point and the Jacobian ofChas a rational torsion subgroup of 5-rank 2. We deduce the main result from the existence of the curveCand a quantitative result of Kulkarni and the second author. 
    more » « less
  2. Abstract Given a prime powerqand$$n \gg 1$$ n 1 , we prove that every integer in a large subinterval of the Hasse–Weil interval$$[(\sqrt{q}-1)^{2n},(\sqrt{q}+1)^{2n}]$$ [ ( q - 1 ) 2 n , ( q + 1 ) 2 n ] is$$\#A({\mathbb {F}}_q)$$ # A ( F q ) for some ordinary geometrically simple principally polarized abelian varietyAof dimensionnover$${\mathbb {F}}_q$$ F q . As a consequence, we generalize a result of Howe and Kedlaya for$${\mathbb {F}}_2$$ F 2 to show that for each prime powerq, every sufficiently large positive integer is realizable, i.e.,$$\#A({\mathbb {F}}_q)$$ # A ( F q ) for some abelian varietyAover$${\mathbb {F}}_q$$ F q . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse–Weil interval. A separate argument determines, for fixedn, the largest subinterval of the Hasse–Weil interval consisting of realizable integers, asymptotically as$$q \rightarrow \infty $$ q ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if$$q \le 5$$ q 5 , then every positive integer is realizable, and for arbitraryq, every positive integer$$\ge q^{3 \sqrt{q} \log q}$$ q 3 q log q is realizable. 
    more » « less
  3. Abstract The Chabauty–Kim method and its refined variant by Betts and Dogra aim to cut out theS-integral points$$X(\mathbb {Z}_S)$$ X ( Z S ) on a curve inside thep-adic points$$X(\mathbb {Z}_p)$$ X ( Z p ) by producing enough Coleman functions vanishing on them. We derive new functions in the case of the thrice-punctured line whenScontains two primes. We describe an algorithm for computing refined Chabauty–Kim loci and verify Kim’s Conjecture over$$\mathbb {Z}[1/6]$$ Z [ 1 / 6 ] for all choices of auxiliary prime $$p < 10{,}000$$ p < 10 , 000
    more » « less
  4. Abstract We investigate the low moments$$\mathbb {E}[|A_N|^{2q}],\, 0 E [ | A N | 2 q ] , 0 < q 1 of secular coefficients$$A_N$$ A N of the critical non-Gaussian holomorphic multiplicative chaos, i.e. coefficients of$$z^N$$ z N in the power series expansion of$$\exp (\sum _{k=1}^\infty X_kz^k/\sqrt{k})$$ exp ( k = 1 X k z k / k ) , where$$\{X_k\}_{k\geqslant 1}$$ { X k } k 1 are i.i.d. rotationally invariant unit variance complex random variables. Inspired by Harper’s remarkable result on random multiplicative functions, Soundararajan and Zaman recently showed that if each$$X_k$$ X k is standard complex Gaussian,$$A_N$$ A N features better-than-square-root cancellation:$$\mathbb {E}[|A_N|^2]=1$$ E [ | A N | 2 ] = 1 and$$\mathbb {E}[|A_N|^{2q}]\asymp (\log N)^{-q/2}$$ E [ | A N | 2 q ] ( log N ) - q / 2 for fixed$$q\in (0,1)$$ q ( 0 , 1 ) as$$N\rightarrow \infty $$ N . We show that this asymptotics holds universally if$$\mathbb {E}[e^{\gamma |X_k|}]<\infty $$ E [ e γ | X k | ] < for some$$\gamma >2q$$ γ > 2 q . As a consequence, we establish the universality for the tightness of the normalized secular coefficients$$A_N(\log (1+N))^{1/4}$$ A N ( log ( 1 + N ) ) 1 / 4 , generalizing a result of Najnudel, Paquette, and Simm. Another corollary is the almost sure regularity of some critical non-Gaussian holomorphic chaos in appropriate Sobolev spaces. Moreover, we characterize the asymptotics of$$\mathbb {E}[|A_N|^{2q}]$$ E [ | A N | 2 q ] for$$|X_k|$$ | X k | following a stretched exponential distribution with an arbitrary scale parameter, which exhibits a completely different behavior and underlying mechanism from the Gaussian universality regime. As a result, we unveil a double-layer phase transition around the critical case of exponential tails. Our proofs combine Harper’s robust approach with a careful analysis of the (possibly random) leading terms in the monomial decomposition of$$A_N$$ A N
    more » « less
  5. Abstract Schinzel and Wójcik have shown that for every$$\alpha ,\beta \in \mathbb {Q}^{\times }\hspace{0.55542pt}{\setminus }\hspace{1.111pt}\{\pm 1\}$$ α , β Q × \ { ± 1 } , there are infinitely many primespwhere$$v_p(\alpha )=v_p(\beta )=0$$ v p ( α ) = v p ( β ) = 0 and where$$\alpha $$ α and$$\beta $$ β generate the same multiplicative group modp. We prove a weaker result in the same direction for algebraic numbers$$\alpha , \beta $$ α , β . Let$$\alpha , \beta \in \overline{\mathbb {Q}} ^{\times }$$ α , β Q ¯ × , and suppose$$|N_{\mathbb {Q}(\alpha ,\beta )/\mathbb {Q}}(\alpha )|\ne 1$$ | N Q ( α , β ) / Q ( α ) | 1 and$$|N_{\mathbb {Q}(\alpha ,\beta )/\mathbb {Q}}(\beta )|\ne 1$$ | N Q ( α , β ) / Q ( β ) | 1 . Then for some positive integer$$C = C(\alpha ,\beta )$$ C = C ( α , β ) , there are infinitely many prime idealsPof Equation missing<#comment/>where$$v_P(\alpha )=v_P(\beta )=0$$ v P ( α ) = v P ( β ) = 0 and where the group$$\langle \beta \bmod {P}\rangle $$ β mod P is a subgroup of$$\langle \alpha \bmod {P}\rangle $$ α mod P with$$[\langle \alpha \bmod {P}\rangle \,{:}\, \langle \beta \bmod {P}\rangle ]$$ [ α mod P : β mod P ] dividingC. A key component of the proof is a theorem of Corvaja and Zannier bounding the greatest common divisor of shiftedS-units. 
    more » « less