skip to main content


Title: Stability Characteristics of the Mesopause Region Above the Andes
Abstract

We report a detailed analysis of atmospheric stabilities in the mesopause region (85–100 km) based on over 2,000 hr of high‐resolution temperature and horizontal wind measurements made with a Na lidar at the Andes Lidar Observatory, located in Cerro Pachón, Chile (30.25°S, 70.74°W). The square of Brunt–Väisälä frequency and the Richardson number are calculated, and occurrence probabilities of convective and dynamic instabilities are derived. An approach to assess the biases due to measurement uncertainties is used to obtain more accurate occurrence probabilities. The overall occurrence probabilities of convective and dynamic instabilities are 2.7% and 6.7%, respectively. High‐, medium‐, and low‐ frequency gravity wave (GW) contributions to these probabilities are isolated, which show that the high‐frequency GWs contribute most but simultaneous presence of high‐ and medium frequency GWs is much more effective in increasing the probabilities. Convective and dynamic instabilities are mainly generated because of the joint effect of different‐scale GWs. Isolated parts of GWs have much less contribution to the generation of both convective and dynamic instabilities. The dynamic instability is mainly contributed from less stable stratification and large wind shear together. Either factor can lead to about 15% of dynamic instability.

 
more » « less
NSF-PAR ID:
10373636
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
9
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Polar Mesospheric Cloud Turbulence (PMC Turbo) experiment was designed to observe and quantify the dynamics of small‐scale gravity waves (GWs) and instabilities leading to turbulence in the upper mesosphere during polar summer using instruments aboard a stratospheric balloon. The PMC Turbo scientific payload comprised seven high‐resolution cameras and a Rayleigh lidar. Overlapping wide and narrow camera field of views from the balloon altitude of ~38 km enabled resolution of features extending from ~20 m to ~100 km at the PMC layer altitude of ~82 km. The Rayleigh lidar provided profiles of temperature below the PMC altitudes and of the PMCs throughout the flight. PMCs were imaged during an ~5.9‐day flight from Esrange, Sweden, to Northern Canada in July 2018. These data reveal sensitivity of the PMCs and the dynamics driving their structure and variability to tropospheric weather and larger‐scale GWs and tides at the PMC altitudes. Initial results reveal strong modulation of PMC presence and brightness by larger‐scale waves, significant variability in the occurrence of GWs and instability dynamics on time scales of hours, and a diversity of small‐scale dynamics leading to instabilities and turbulence at smaller scales. At multiple times, the overall field of view was dominated by extensive and nearly continuous GWs and instabilities at horizontal scales from ~2 to 100 km, suggesting sustained turbulence generation and persistence. At other times, GWs were less pronounced and instabilities were localized and/or weaker, but not absent. An overview of the PMC Turbo experiment motivations, scientific goals, and initial results is presented here.

     
    more » « less
  2. Abstract

    Severe convection occurring in high-shear, low-CAPE (HSLC) environments is a common cool-season threat in the southeastern United States. Previous studies of HSLC convection document the increased operational challenges that these environments present compared to their high-CAPE counterparts, corresponding to higher false-alarm ratios and lower probability of detection for severe watches and warnings. These environments can exhibit rapid destabilization in the hours prior to convection, sometimes associated with the release of potential instability. Here, we use self-organizing maps (SOMs) to objectively identify environmental patterns accompanying HSLC cool-season severe events and associate them with variations in severe weather frequency and distribution. Large-scale patterns exhibit modest variation within the HSLC subclass, featuring strong surface cyclones accompanied by vigorous upper-tropospheric troughs and northward-extending regions of instability, consistent with prior studies. In most patterns, severe weather occurs immediately ahead of a cold front. Other convective ingredients, such as lower-tropospheric vertical wind shear, near-surface equivalent potential temperature (θe) advection, and the release of potential instability, varied more significantly across patterns. No single variable used to train SOMs consistently demonstrated differences in the distribution of severe weather occurrence across patterns. Comparison of SOMs based on upper and lower quartiles of severe occurrence demonstrated that the release of potential instability was most consistently associated with higher-impact events in comparison to other convective ingredients. Overall, we find that previously developed HSLC composite parameters reasonably identify high-impact HSLC events.

    Significance Statement

    Even when atmospheric instability is not optimal for severe convective storms, in some situations they can still occur, presenting increased challenges to forecasters. These marginal environments may occur at night or during the cool season, when people are less attuned to severe weather threats. Here, we use a sorting algorithm to classify different weather patterns accompanying such storms, and we distinguish which specific patterns and weather system features are most strongly associated with severe storms. Our goals are to increase situational awareness for forecasters and to improve understanding of the processes leading to severe convection in marginal environments.

     
    more » « less
  3. Abstract

    We analyze the gravity waves (GWs) observed by a Rayleigh lidar at the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) (16.08°E, 69.38°N) in Norway atz ∼ 20–85 km on 12–14 January 2016. These GWs propagate upward and downward away fromzknee = 57 and 64 km at a horizontally‐displaced location with periodsτr ∼ 5–10 hr and vertical wavelengthsλz ∼ 9–20 km. Because the hodographs are distorted, we introduce an alternative method to determine the GW parameters. We find that these GWs are medium to large‐scale, and propagate north/northwestward with intrinsic horizontal phase speeds of ∼35–65 m/s. Since the GW parameters are similar above and belowzknee, these are secondary GWs created by local body forces (LBFs) south/southeast of ALOMAR. We use the nudged HIAMCM (HIgh Altitude Mechanistic general Circulation Model) to model these events. Remarkably, the model reproduces similar GW structures over ALOMAR, withzknee = 58 and 66 km. The event #1 GWs are created by a LBF at ∼35°E, ∼60°N, andz ∼ 58 km. This LBF is created by the breaking and dissipation of primary GWs generated and amplified by the imbalance of the polar night jet below the wind maximum; the primary GWs for this event are created atz ∼ 25–35 km at 49–53°N. We also find that the HIAMCM GWs agree well with those observed by the Atmospheric InfraRed Sounder (AIRS) satellite, and that those AIRS GWs south and north of ∼50°N over Europe are mainly mountain waves and GWs from the polar vortex, respectively.

     
    more » « less
  4. Abstract

    Results of two‐dimensional and narrow three‐dimensional (2‐D and 2.5‐D) simulations of a gravity wave (GW) packet localized in altitude and along its propagation direction employing a new, versatile compressible model are described. The simulations explore self‐acceleration and instability dynamics in an idealized atmosphere at rest under mean solar conditions in a domain extending to an altitude of 260 km and 1,800 km horizontally without artificial dissipation. High resolution in the central 2.5‐D domain enables the description of 3‐D instability dynamics accounting for breaking, dissipation, and momentum deposition within the GW packet. 2‐D results describe responses to localized self‐acceleration effects, including generation of secondary GWs (SGWs) at larger scales able to propagate to much higher altitudes. 2.5‐D results exhibit instability forms consistent with previous 3‐D simulations of instability dynamics and cause SGW generation and propagation at smaller spatial scales to weaken significantly compared to the 2‐D results. SGW responses at larger scales are driven primarily by GW/mean flow interactions arising at early stages of the self‐acceleration dynamics prior to strong GW instabilities and dissipation. As a result, they exhibit similar responses in both the 2‐D and 2.5‐D simulations and readily propagate to high altitudes at large distances from the initial GW packet. A companion paper examines these dynamics for an initial GW packet localized in three dimensions and evolving in a representative 3‐D tidal wind field.

     
    more » « less
  5. Abstract

    The Polar Mesospheric Cloud (PMC) Turbulence experiment performed optical imaging and Rayleigh lidar PMC profiling during a 6‐day flight in July 2018. A mosaic of seven imagers provided sensitivity to spatial scales from ∼20 m to 100 km at a ∼2‐s cadence. Lidar backscatter measurements provided PMC brightness profiles and enabled definition of vertical displacements of larger‐scale gravity waves (GWs) and smaller‐scale instabilities of various types. These measurements captured an interval of strong, widespread Kelvin‐Helmholtz instabilities (KHI) occurring over northeastern Canada on July 12, 2018 during a period of significant GW activity. This paper addresses the evolution of the KHI field and the characteristics and roles of secondary instabilities within the KHI. Results include the imaging of secondary KHI in the middle atmosphere and multiple examples of KHI “tube and knot” (T&K) dynamics where two or more KH billows interact. Such dynamics have been identified clearly only once in the atmosphere previously. Results reveal that KHI T&K arise earlier and evolve more quickly than secondary instabilities of uniform KH billows. A companion paper by Fritts et al. (2022),https://doi.org/10.1029/2021JD035834reveals that they also induce significantly larger energy dissipation rates than secondary instabilities of individual KH billows. The expected widespread occurrence of KHI T&K events may have important implications for enhanced turbulence and mixing influencing atmospheric structure and variability.

     
    more » « less