skip to main content


Title: Battery-free wireless imaging of underwater environments
Abstract

Imaging underwater environments is of great importance to marine sciences, sustainability, climatology, defense, robotics, geology, space exploration, and food security. Despite advances in underwater imaging, most of the ocean and marine organisms remain unobserved and undiscovered. Existing methods for underwater imaging are unsuitable for scalable, long-term, in situ observations because they require tethering for power and communication. Here we describe underwater backscatter imaging, a method for scalable, real-time wireless imaging of underwater environments using fully-submerged battery-free cameras. The cameras power up from harvested acoustic energy, capture color images using ultra-low-power active illumination and a monochrome image sensor, and communicate wirelessly at net-zero-power via acoustic backscatter. We demonstrate wireless battery-free imaging of animals, plants, pollutants, and localization tags in enclosed and open-water environments. The method’s self-sustaining nature makes it desirable for massive, continuous, and long-term ocean deployments with many applications including marine life discovery, submarine surveillance, and underwater climate change monitoring.

 
more » « less
Award ID(s):
1844280
NSF-PAR ID:
10373698
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present the design, implementation, and evaluation of Van Atta Acoustic Backscatter (VAB), a technology that enables long-range, ultra-low-power networking in underwater environments. At the core of VAB is a novel, scalable underwater backscatter architecture that bridges recent advances in RF backscatter (Van Atta architectures) with ultra-low-power underwater acoustic networks. Our design introduces multiple innovations across the networking stack, which enable it to overcome unique challenges that arise from the electro-mechanical properties of underwater backscatter and the challenging nature of low-power underwater acoustic channels. We implemented our design in an end-to-end system, and evaluated it in over 1,500 real-world experimental trials in a river and the ocean. Our evaluation in stationary setups demonstrates that VAB achieves a communication range that exceeds 300m in round trip backscatter across orientations (at BER of 10−3). We compared our design head-to-head with past state-of-the-art systems, demonstrating a 15× improvement in communication range at the same throughput and power. By realizing hundreds of meters of range in underwater backscatter, this paper presents the first practical system capable of coastal monitoring applications. Finally, our evaluation represents the first experimental validation of underwater backscatter in the ocean. 
    more » « less
  2. null (Ed.)
    Underwater motion recognition using acoustic wireless networks has a promisingly potential to be applied to the diver activity monitoring and aquatic animal recognition without the burden of expensive underwater cameras which have been used by the image-based underwater classification techniques. However, accurately extracting features that are independent of the complicated underwater environments such as inhomogeneous deep seawater is a serious challenge for underwater motion recognition. Velocities of target body (VTB) during the motion are excellent environment independent features for WiFi-based recognition techniques in the indoor environments, however, VTB features are hard to be extracted accurately in the underwater environments. The inaccurate VTB estimation is caused by the fact that the signal propagates along with a curve instead of a straight line as the signal propagates in the air. In this paper, we propose an underwater motion recognition mechanism in the inhomogeneous deep seawater using acoustic wireless networks. To accurately extract velocities of target body features, we first derive Doppler Frequency Shift (DFS) coefficients that can be utilized for VTB estimation when signals propagate deviously. Secondly, we propose a dynamic self-refining (DSR) optimization algorithm with acoustic wireless networks that consist of multiple transmitter-receiver links to estimate the VTB. Those VTB features can be utilized to train the convolutional neural networks (CNN). Through the simulation, estimated VTB features are evaluated and the testing recognition results validate that our proposed underwater motion recognition mechanism is able to achieve high classification accuracy. 
    more » « less
  3. Abstract

    The Cabled Observatory Vent Imaging Sonar (COVIS) was installed on the Ocean Observatories Initiative's Regional Cabled Array observatory at ASHES hydrothermal vent field on Axial Seamount in July 2018. The acoustic backscatter data recorded by COVIS in August–September 2018, in conjunction with in situ temperature measurements, are used to showcase and verify the use of COVIS for long‐term, quantitative monitoring of hydrothermal discharge. Specifically, sonar data processing generates three‐dimensional backscatter images of the buoyant plumes above major sulfide structures and two‐dimensional maps of diffuse flows within COVIS's field‐of‐view. The backscatter images show substantial changes of plume appearance and orientation that mostly reflect plume bending in the presence of ambient currents and potentially the variations of outflow fluxes. The intensity of acoustic backscatter decreases significantly for highly bent plumes as compared to nearly vertical plumes, reflecting enhanced mixing of plume fluids with seawater driven by ambient currents. A forward model of acoustic backscatter from a buoyancy‐driven plume developed in this study yields a reasonable match with the observation, which paves the way for inversely estimating the source heat flux of a hydrothermal plume from acoustic backscatter measurements. The acoustic observations of diffuse flows show large temporal variations on time scales of hours to days, especially at tidal frequencies, but no apparent long‐term trend. These findings demonstrate COVIS's ability to quantitatively monitor hydrothermal discharge from both focused and diffuse sources to provide the research community with key observational data for studying the linkage of hydrothermal activity with oceanic and geological processes.

     
    more » « less
  4. Abstract

    The human body exhibits complex, spatially distributed chemo-electro-mechanical processes that must be properly captured for emerging applications in virtual/augmented reality, precision health, activity monitoring, bionics, and more. A key factor in enabling such applications involves the seamless integration of multipurpose wearable sensors across the human body in different environments, spanning from indoor settings to outdoor landscapes. Here, we report a versatile epidermal body area network ecosystem that enables wireless power and data transmission to and from battery-free wearable sensors with continuous functionality from dry to underwater settings. This is achieved through an artificial near field propagation across the chain of biocompatible, magneto-inductive metamaterials in the form of stretchable waterborne skin patches—these are fully compatible with pre-existing consumer electronics. Our approach offers uninterrupted, self-powered communication for human status monitoring in harsh environments where traditional wireless solutions (such as Bluetooth, Wi-Fi or cellular) are unable to communicate reliably.

     
    more » « less
  5. Realizing the vision of ubiquitous battery-free sensing has proven to be challenging, mainly due to the practical energy and range limitations of current wireless communication systems. To address this, we design the first wide-area and scalable backscatter network with multiple receivers (RX) and transmitters (TX) base units to communicate with battery-free sensor nodes. Our system circumvents the inherent limitations of backscatter systems--including the limited coverage area, frequency-dependent operability, and sensor node limitations in handling network tasks--by introducing several coordination techniques between the base units starting from a single RX-TX pair to networks with many RX and TX units. We build low-cost RX and TX base units and battery-free sensor nodes with multiple sensing modalities and evaluate the performance of the MultiScatter system in various deployments. Our evaluation shows that we can successfully communicate with battery-free sensor nodes across 23400 square feet of a two-floor educational complex using 5 RX and 20 TX units, costing $569. Also, we show that the aggregated throughput of the backscatter network increases linearly as the number of RX units and the network coverage grows. 
    more » « less