skip to main content


Title: An overview of the evolving jurisdictional scope of the U.S. Clean Water Act for hydrologists
Abstract

The Clean Water Act (CWA) is the primary federal mechanism by which the physical, chemical, and biological integrity of streams, lakes, and wetlands are protected in the United States. The CWA has evolved considerably since its initial passage in 1948, including explicit expansions and contractions of jurisdictional scope through a series of legislative actions, court decisions, and agency rules. Here, we provide a practical summary of the CWA's evolution, detailing the major updates or revisions and their circumstances. Additionally, we identify the jurisdictional scope of the law for rivers and streams, lakes, and wetlands based on the language used and implementation by the agencies during the same time period. While the rulemaking process commonly uses language that will be abstract to many hydrologists, understanding the on‐the‐ground implications, quantifying regulatory (un)certainties, and assessing the magnitude of changes through time is important to understanding the implications of environmental regulation development, litigation, and enforcement. Thus, we translate the enforcement norms and definitions into quantitative estimates for Clean Water Act scope in the Wabash River Basin (Illinois, Indiana, and Ohio, USA) as a demonstration of the spatial consequences of changing regulatory language.

This article is categorized under:

Engineering Water > Planning Water

Human Water > Water Governance

Water and Life > Conservation, Management, and Awareness

 
more » « less
NSF-PAR ID:
10373741
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Water
Volume:
9
Issue:
5
ISSN:
2049-1948
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Clean Water Act (CWA) of 1972 regulates water quality in U.S. inland waters under a system of cooperative federalism in which states are delegated implementation and enforcement authority of CWA provisions by the U.S. Environmental Protection Agency. We leveraged heterogeneity in state implementation of the CWA to evaluate the efficacy of its nonpoint source provisions in reducing nutrient pollution, the leading cause of water quality impairment in U.S. inland waters. We used national survey data to estimate changes in nutrient concentrations over a decade and evaluated the effect of state-level policy implementation. We found no evidence to support an effect of (i) grant spending on nonpoint source pollution remediation, (ii) nutrient criteria development, or (iii) water quality monitoring intensity on 10-year trends in nutrient concentrations. These results suggest that the current federal policy paradigm for improving water quality is not creating desired outcomes.

     
    more » « less
  2. Abstract

    Many headwater wetlands are integrated into flowpath networks and can serve as sources of streamflow for downgradient waters. We demonstrate this with five years of data in vernal pool, swale, and headwater stream complexes in the Central Valley, California. Long-term United States Geological Survey data suggest that the mean flow duration from the smallest watersheds in this region, including those with vernal pool, swale, and headwater stream complexes, is ~ 85 days per year. Our data concur, indicating that the annual days of flow per year from our vernal pool, swale, and headwater stream complexes ranges from ~ 20–200, but is ~ 85 when annual precipitation is 100% of normal. Peak stages are evident first in vernal pools which then propagate sequentially downstream through swales, headwater streams, and to the Sacramento River at celerities of ~ 1-1.5 m/s, consistent with expected flood wave velocities. Geospatial analyses show that these vernal pool, swale, and headwater stream features cover > 4% of the study area. Our results suggest these systems can be significant sources of streamflow, and therefore play an important role in maintaining the chemical, physical, and biological integrity of downstream waters, which has important implications for the definition of waters of the United States subject to regulation under the Clean Water Act.

     
    more » « less
  3. Abstract

    There are over 700 aquatic ecological assessment approaches across the globe that meet specific institutional goals. However, in many cases, multiple assessment tools are designed to meet the same management need, resulting in a confusing array of overlapping options. Here, we look at six riverine wetland assessments currently in use in Montana, USA, and ask which tool (1) best captures the condition across a disturbance gradient and (2) has the most utility to meet the regulatory or management needs. We used descriptive statistics to compare wetland assessments (n = 18) across a disturbance gradient determined by a landscape development intensity. Factor analysis showed that many of the tools had internal metrics that did not correspond well with overall results, hindering the tool’s ability to act as designed. We surveyed regional wetland managers (n = 56) to determine the extent of their use of each of the six tools and how well they trusted the information the assessment tool provided. We found that the Montana Wetland Assessment Methodology best measured the range of disturbance and had the highest utility to meet Clean Water Act (CWA§ 404) needs. Montana Department of Environmental Quality was best for the CWA§ 303(d) & 305(b) needs. The US Natural Resources Conservation Service’s Riparian Assessment Tool was the third most used by managers but was the tool that had the least ability to distinguish across a disturbance, followed by the US Bureau of Land Management’s Proper Functioning Condition.

     
    more » « less
  4. Abstract

    Over the past two decades, scholars have invoked E. P. Thompson's and James Scott's concept of a “moral economy” to explain how people mobilize notions of justice to make claims to water. We draw together 20 years of literature to assess the state‐of‐the‐art present in research on moral economies for water. We trace the historical foundations of the moral economies concept and its relevance to water; define the three basic components of a moral economy for water—(1) shared understandings of justice, (2) normative economic practices, (3) social pressure mechanisms—and provide examples of how they manifest globally. We then discuss how moral economies for water can cycle through four basic states—balanced struggle, intensified reaction, mass revolt, and collapse and dissolution—at different scales. We also explore the implications of the moral economies framework for key areas of current research on water: water sharing, water commons, water markets, and biocultural outcomes, and discuss the ways in which the moral economies framework dovetails with recent advances in water research, especially the economics of water and development. We argue that the moral economies framework is a powerful explanatory tool for understanding the relationships between ideas of water justice, economic behaviors, and mechanisms of social enforcement that complements other methodological approaches and theoretical perspectives. We envision moral economies for water as a field that can facilitate a range of norm‐based analyses of economic behavior and water justice, including across scales—from local to global—and in broad, integrative, multiscalar, and cross‐disciplinary ways.

    This article is categorized under:

    Human Water > Water Governance

    Human Water > Value of Water

    Human Water > Rights to Water

     
    more » « less
  5. Abstract

    Understanding global ecological patterns and processes, from biogeochemical to biogeographical, requires broad‐scale macrosystems context for comparing and contrasting ecosystems. Climate gradients (precipitation and temperature) and other continental‐scale patterns shape freshwater environments due to their influences on terrestrial environments and their direct and indirect effects on the abiotic and biotic characteristics of lakes, streams, and wetlands. We combined literature review, analyses of open access data, and logical argument to assess abiotic and biotic characters of freshwater systems across gradients of latitude and elevation that drive precipitation, temperature, and other variability. We explored the predictive value of analyzing patterns in freshwater ecosystems at the global macrosystems scale. We found many patterns based on climate, particularly those dependent upon hydrologic characteristics and linked to characteristics of terrestrial biomes. For example, continental waters of dry areas will generally be widely dispersed and have higher probability of drying and network disconnection, greater temperatures, greater inorganic turbidity, greater salinity, and lower riparian canopy cover relative to areas with high precipitation. These factors will influence local community composition and ecosystem rates. Enough studies are now available at the continental or global scale to start to characterize patterns under a coherent conceptual framework, though considerable gaps exist in the tropics and less developed regions. We present illustrative global‐scale trends of abiotic, biotic, and anthropogenic impacts in freshwater ecosystems across gradients of precipitation and temperature to further understanding of broad‐scale trends and to aid prediction in the face of global change. We view freshwater systems as occurring across arrays of multiple gradients (including latitude, altitude, and precipitation) rather than areas with specific boundaries. While terrestrial biomes capture some variability along these gradients that influence freshwaters, other features such as, slope, geology, and historical glaciation also influence freshwaters. Our conceptual framework is not so much a single hypothesis as a way to logically characterize patterns in freshwaters at scales relevant to (1) evolutionary processes that give rise to freshwater biodiversity, (2) regulatory units that influence freshwater ecosystems, and (3) the current scope of anthropogenic impacts on freshwaters and the vital ecosystem services they provide.

     
    more » « less