skip to main content


Title: A chemical dynamics study of the reaction of the methylidyne radical (CH, X 2 Π) with dimethylacetylene (CH 3 CCCH 3 , X 1 A 1g )
The gas-phase reaction of the methylidyne (CH; X 2 Π) radical with dimethylacetylene (CH 3 CCCH 3 ; X 1 A 1g ) was studied at a collision energy of 20.6 kJ mol −1 under single collision conditions with experimental results merged with ab initio calculations of the potential energy surface (PES) and ab initio molecule dynamics (AIMD) simulations. The crossed molecular beam experiment reveals that the reaction proceeds barrierless via indirect scattering dynamics through long-lived C 5 H 7 reaction intermediate(s) ultimately dissociating to C 5 H 6 isomers along with atomic hydrogen with atomic hydrogen predominantly released from the methyl groups as verified by replacing the methylidyne with the D1-methylidyne reactant. AIMD simulations reveal that the reaction dynamics are statistical leading predominantly to p28 (1-methyl-3-methylenecyclopropene, 13%) and p8 (1-penten-3-yne, 81%) plus atomic hydrogen with a significant amount of available energy being channeled into the internal excitation of the polyatomic reaction products. The dynamics are controlled by addition to the carbon–carbon triple bond with the reaction intermediates eventually eliminating a hydrogen atom from the methyl groups of the dimethylacetylene reactant forming 1-methyl-3-methylenecyclopropene (p28). The dominating pathways reveal an unexpected insertion of methylidyne into one of the six carbon–hydrogen single bonds of the methyl groups of dimethylacetylene leading to the acyclic intermediate, which then decomposes to 1-penten-3-yne (p8). Therefore, the methyl groups of dimethylacetylene effectively ‘screen’ the carbon–carbon triple bond from being attacked by addition thus directing the dynamics to an insertion process as seen exclusively in the reaction of methylidyne with ethane (C 2 H 6 ) forming propylene (CH 3 C 2 H 3 ). Therefore, driven by the screening of the triple bond, one propynyl moiety (CH 3 CC) acts in four out of five trajectories as a spectator thus driving an unexpected, but dominating chemistry in analogy to the methylidyne – ethane system.  more » « less
Award ID(s):
1920304
NSF-PAR ID:
10373813
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
24
Issue:
1
ISSN:
1463-9076
Page Range / eLocation ID:
578 to 593
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report absolute integral cross section (ICS) measurements using a dual-source merged-fast-beams apparatus to study the titular reactions over the relative translational energy range of E r ∼ 0.01–10 eV. We used photodetachment of C − to produce a pure beam of atomic C in the ground electronic 3 P term, with statistically populated fine-structure levels. The H 2 + and D 2 + were formed in an electron impact ionization source, with well known vibrational and rotational distributions. The experimental work is complemented by a theoretical study of the CH 2 + electronic system in the reactant and product channels, which helps to clarify the possible reaction mechanisms underlying the ICS measurements. Our measurements provide evidence that the reactions are barrierless and exoergic. They also indicate the apparent absence of an intermolecular isotope effect, to within the total experimental uncertainties. Capture models, taking into account either the charge-induced dipole interaction potential or the combined charge-quadrupole and charge-induced dipole interaction potentials, produce reaction cross sections that lie a factor of ∼4 above the experimental results. Based on our theoretical study, we hypothesize that the reaction is most likely to proceed adiabatically through the 1 4 A′ and 1 4 A′′ states of CH 2 + via the reaction C( 3 P) + H 2 + ( 2 Σ+g) → CH + ( 3 Π) + H( 2 S). We also hypothesize that at low collision energies only H 2 + ( v ≤ 2) and D 2 + ( v ≤ 3) contribute to the titular reactions, due to the onset of dissociative charge transfer for higher vibrational v levels. Incorporating these assumptions into the capture models brings them into better agreement with the experimental results. Still, for energies ≲0.1 eV where capture models are most relevant, the modified charge-induced dipole model yields reaction cross sections with an incorrect energy dependence and lying ∼10% below the experimental results. The capture cross section obtained from the combined charge-quadrupole and charge-induced dipole model better matches the measured energy dependence but lies ∼30–50% above the experimental results. These findings provide important guidance for future quasiclassical trajectory and quantum mechanical treatments of this reaction. 
    more » « less
  2. Geminal diols—organic molecules carrying two hydroxyl groups at the same carbon atom—have been recognized as key reactive intermediates by the physical (organic) chemistry and atmospheric science communities as fundamental transients in the aerosol cycle and in the atmospheric ozonolysis reaction sequence. Anticipating short lifetimes and their tendency to fragment to water plus the aldehyde or ketone, free geminal diols represent one of the most elusive classes of organic reactive intermediates. Here, we afford an exceptional glance into the preparation of the previously elusive methanediol [CH 2 (OH) 2 ] transient—the simplest geminal diol—via energetic processing of low-temperature methanol–oxygen ices. Methanediol was identified in the gas phase upon sublimation via isomer-selective photoionization reflectron time-of-flight mass spectrometry combined with isotopic substitution studies. Electronic structure calculations reveal that methanediol is formed via excited state dynamics through insertion of electronically excited atomic oxygen into a carbon–hydrogen bond of the methyl group of methanol followed by stabilization in the icy matrix. The first preparation and detection of methanediol demonstrates its gas-phase stability as supported by a significant barrier hindering unimolecular decomposition to formaldehyde and water. These findings advance our perception of the fundamental chemistry and chemical bonding of geminal diols and signify their role as an efficient sink of aldehydes and ketones in atmospheric environments eventually coupling the atmospheric chemistry of geminal diols and Criegee intermediates. 
    more » « less
  3. Recently, over 200 molecules have been detected in the interstellar medium (ISM), with about one third being complex organic molecules (COMs), molecules containing six or more atoms. Over the last few decades, astrophysical laboratory experiments have shown that several COMs are formed via interaction of ionizing radiation within ices deposited on interstellar dust particles at 10 K (H 2 O, CH 3 OH, CO, CO 2 , CH 4 , NH 3 ). However, there is still a lack of understanding of the chemical complexity that is available through individual ice constituents. The present research investigates experimentally the synthesis of carbon, hydrogen, and oxygen bearing COMs from interstellar ice analogues containing carbon monoxide (CO) and methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), or acetylene (C 2 H 2 ) exposed to ionizing radiation. Utilizing online and in situ techniques, such as infrared spectroscopy and tunable photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), specific isomers produced could be characterized. A total of 12 chemically different groups were detected corresponding to C 2 H n O ( n = 2, 4, 6), C 3 H n O ( n = 2, 4, 6, 8), C 4 H n O ( n = 4, 6, 8, 10), C 5 H n O ( n = 4, 6, 8, 10), C 6 H n O ( n = 4, 6, 8, 10, 12, 14), C 2 H n O 2 ( n = 2, 4), C 3 H n O 2 ( n = 4, 6, 8), C 4 H n O 2 ( n = 4, 6, 8, 10), C 5 H n O 2 ( n = 6, 8), C 6 H n O 2 ( n = 8, 10, 12), C 4 H n O 3 ( n = 4, 6, 8), and C 5 H n O 3 ( n = 6, 8). More than half of these isomer specifically identified molecules have been identified in the ISM, and the remaining COMs detected here can be utilized to guide future astronomical observations. Of these isomers, three groups – alcohols, aldehydes, and molecules containing two of these functional groups – displayed varying degrees of unsaturation. Also, the detection of 1-propanol, 2-propanol, 1-butanal, and 2-methyl-propanal has significant implications as the propyl and isopropyl moieties (C 3 H 7 ), which have already been detected in the ISM via propyl cyanide and isopropyl cyanide, could be detected in our laboratory studies. General reaction mechanisms for their formation are also proposed, with distinct follow-up studies being imperative to elucidate the complexity of COMs synthesized in these ices. 
    more » « less
  4. Abstract

    Although most class (b) transition metals have been studied in regard to CH4activation, divalent silver (AgII), possibly owing to its reactive nature, is the only class (b) high‐valent transition metal center that is not yet reported to exhibit reactivities towards CH4activation. We now report that electrochemically generated AgIImetalloradical readily functionalizes CH4into methyl bisulfate (CH3OSO3H) at ambient conditions in 98 % H2SO4. Mechanistic investigation experimentally unveils a low activation energy of 13.1 kcal mol−1, a high pseudo‐first‐order rate constant of CH4activation up to 2.8×103 h−1at room temperature and a CH4pressure of 85 psi, and two competing reaction pathways preferable towards CH4activation over solvent oxidation. Reaction kinetic data suggest a Faradaic efficiency exceeding 99 % beyond 180 psi CH4at room temperature for potential chemical production from widely distributed natural gas resources with minimal infrastructure reliance.

     
    more » « less
  5. Abstract

    Although most class (b) transition metals have been studied in regard to CH4activation, divalent silver (AgII), possibly owing to its reactive nature, is the only class (b) high‐valent transition metal center that is not yet reported to exhibit reactivities towards CH4activation. We now report that electrochemically generated AgIImetalloradical readily functionalizes CH4into methyl bisulfate (CH3OSO3H) at ambient conditions in 98 % H2SO4. Mechanistic investigation experimentally unveils a low activation energy of 13.1 kcal mol−1, a high pseudo‐first‐order rate constant of CH4activation up to 2.8×103 h−1at room temperature and a CH4pressure of 85 psi, and two competing reaction pathways preferable towards CH4activation over solvent oxidation. Reaction kinetic data suggest a Faradaic efficiency exceeding 99 % beyond 180 psi CH4at room temperature for potential chemical production from widely distributed natural gas resources with minimal infrastructure reliance.

     
    more » « less