skip to main content


Title: Efficient and Stable Blue Light Emitting Diodes Based on CsPbBr 3 Nanoplatelets with Surface Passivation by a Multifunctional Organic Sulfate
Abstract

Metal halide perovskite nanocrystals (NCs) have emerged as highly promising light emitting materials for various applications, ranging from perovskite light‐emitting diodes (PeLEDs) to lasers and radiation detectors. While remarkable progress has been achieved in highly efficient and stable green, red, and infrared perovskite NCs, obtaining efficient and stable blue‐emitting perovskite NCs remains a great challenge. Here, a facile synthetic approach for the preparation of blue emitting CsPbBr3nanoplatelets (NPLs) with treatment by an organic sulfate is reported, 2,2‐(ethylenedioxy) bis(ethylammonium) sulfate (EDBESO4), which exhibit remarkably enhanced photoluminescence quantum efficiency (PLQE) and stability as compared to pristine CsPbBr3NPLs coated with oleylamines. The PLQE is improved from ≈28% for pristine CsPbBr3NPLs to 85% for EDBESO4treated CsPbBr3NPLs. Detailed structural characterizations reveal that EDBESO4treatment leads to surface passivation of CsPbBr3NPLs by both EDBE2+and SO42–ions, which helps to prevent the coalescence of NPLs and suppress the degradation of NPLs. A simple proof‐of‐concept device with emission peaked at 462 nm exhibits an external quantum efficiency of 1.77% with a luminance of 691 cd m−2and a half‐lifetime of 20 min, which represents one of the brightest pure blue PeLEDs based on NPLs reported to date.

 
more » « less
Award ID(s):
1919633 1912911 2005079
NSF-PAR ID:
10442067
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
13
Issue:
33
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Blue electroluminescence is highly desired for emerging light‐emitting devices for display applications and optoelectronics in general. However, saturated, efficient, and stable blue emission has been challenging to achieve, particularly in mixed‐halide perovskites, where intrinsic ion motion and halide segregation compromises spectral purity. Here, CsPbBr3−xClxperovskites, polyelectrolytes, and a salt additive are leveraged to demonstrate pure blue emission from single‐layer light‐emitting electrochemical cells (LECs). The electrolytes transport the ions from salt additives, enhancing charge injection and stabilizing the inherent perovskite emissive lattice for highly pure and sustained blue emission. Substituting Cl into CsPbBr3tunes the perovskite luminescence from green through blue. Sky blue and saturated blue devices produce International Commission on Illumination coordinates of (0.105, 0.129) and (0.136, 0.068), respectively, with the latter meeting the US National Television Committee standard for the blue primary. Likewise, maximum luminances of 2900 and 1000 cd m−2, external quantum efficiencies (EQEs) of 4.3% and 3.9%, and luminance half‐lives of 5.7 and 4.9 h are obtained for sky blue and saturated blue devices, respectively. Polymer and LiPF6inclusion increases photoluminescence efficiency, suppresses halide segregation, induces thin‐film smoothness and uniformity, and reduces crystallite size. Overall, these devices show superior performance among blue perovskite light‐emitting diodes (PeLEDs) and general LECs.

     
    more » « less
  2. Abstract

    A few unit cells of thick colloidal CsPbBr3nanoplatelets (NPLs) exhibit strong quantum confinement. However, due to the increased surface‐to‐volume ratio, they show poor photoluminescence quantum yield (PLQY) resulting from surface traps. Here, a unique, quantum‐confined core/crown perovskite is reported for the first time, where the CsPbBr3NPL surface is passivated by laterally grown thin FAPbBr3crown layers. Unlike regular core/shells, the FAPbBr3is coated around the core NPLs resulting in blue emission. Careful control of the growth kinetics while monitoring growth using in situ PL led to the formation of core/crown perovskites with nearly two times improvement in thin film PLQYs. HR‐TEM analyses show that the interplanar distances of the core match with CsPbBr3and the crown match with FAPbBr3. The XRD and TEM analyses revealed that their thickness remains the same even if Cs+to FA+ratios are varied, indicating lateral growth of FAPbBr3around the CsPbBr3core. Further, FA+ions in the crown lattice are confirmed by FTIR and1HNMR. Finally, considering their high PLQYs and narrow linewidths, the core/crown NPLs are employed as blue emitters in light‐emitting diodes, and a maximum external quantum efficiency of 0.4% at 2.71 eV (457 nm) with a luminance of 513 cd m−2is achieved.

     
    more » « less
  3. Abstract

    While there has been extensive investigation into modulating quasi‐2D perovskite compositions in light‐emitting diodes (LEDs) for promoting their electroluminescence, very few reports have studied approaches involving enhancement of the energy transfer between quasi‐2D perovskite layers of the film, which plays very important role for achieving high‐performance perovskite LEDs (PeLEDs). In this work, a bifunctional ligand of 4‐(2‐aminoethyl)benzoic acid (ABA) cation is strategically introduced into the perovskite to diminish the weak van der Waals gap between individual perovskite layers for promoting coupled quasi‐2D perovskite layers. In particular, the strengthened interaction between coupled quasi‐2D perovskite layers favors an efficient energy transfer in the perovskite films. The introduced ABA can also simultaneously passivate the perovskite defects by reducing metallic Pb for less nonradiative recombination loss. Benefiting from the advanced properties of ABA incorporated perovskites, highly efficient blue PeLEDs with external quantum efficiency of 10.11% and a very long operational stability of 81.3 min, among the best performing blue quasi‐2D PeLEDs, are achieved. Consequently, this work contributes an effective approach for high‐performance and stable blue PeLEDs toward practical applications.

     
    more » « less
  4. Metal halide perovskite nanocrystals (NCs) have emerged as new-generation light-emitting materials with narrow emissions and high photoluminescence quantum efficiencies (PLQEs). Various types of perovskite NCs, e.g., platelets, wires, and cubes, have been discovered to exhibit tunable emissions across the whole visible spectrum. Despite remarkable advances in the field of perovskite NCs, many nanostructures in inorganic NCs have not yet been realized in metal halide perovskites, and producing highly efficient blue-emitting perovskite NCs remains challenging and of great interest. Here, we report the discovery of highly efficient blue-emitting cesium lead bromide (CsPbBr 3 ) perovskite hollow NCs. By facile solution processing of CsPbBr 3 precursor solution containing ethylenediammonium bromide and sodium bromide, in situ formation of hollow CsPbBr 3 NCs with controlled particle and pore sizes is realized. Synthetic control of hollow nanostructures with quantum confinement effect results in color tuning of CsPbBr 3 NCs from green to blue, with high PLQEs of up to 81%. 
    more » « less
  5. Abstract

    Perovskite light‐emitting diodes (PeLEDs) are advancing because of their superior external quantum efficiencies (EQEs) and color purity. Still, additional work is needed for blue PeLEDs to achieve the same benchmarks as the other visible colors. This study demonstrates an extremely efficient blue PeLED with a 488 nm peak emission, a maximum luminance of 8600 cd m−2, and a maximum EQE of 12.2% by incorporating the double‐sided ethane‐1,2‐diammonium bromide (EDBr2) ligand salt along with the long‐chain ligand methylphenylammonium chloride (MeCl). The EDBr2successfully improves the interaction between 2D perovskite layers by reducing the weak van der Waals interaction and creating a Dion–Jacobson (DJ) structure. Whereas the pristine sample (without EDBr2) is inhibited by small stacking number (n) 2D phases with nonradiative recombination regions that diminish the PeLED performance, adding EDBr2successfully enables better energy transfer from smallnphases to largernphases. As evidenced by photoluminescence (PL), scanning electron microscopy (SEM), and atomic force microscopy (AFM) characterization, EDBr2improves the morphology by reduction of pinholes and passivation of defects, subsequently improving the efficiencies and operational lifetimes of quasi‐2D blue PeLEDs.

     
    more » « less