Summary Histone lysine methylations (HLMs) are implicated in control of gene expression in different eukaryotes. However, the role of HLMs in regulating desirable crop traits and the enzymes involved in these modifications are poorly understood.We studied the functions of tomato histone H3 lysine methyltransferases SET Domain Group 33 (SDG33) and SDG34 in biotic and abiotic stress responses.SDG33andSDG34gene edited mutants were altered in H3K36 and H3K4 methylations, and expression of genes involved in diverse processes and responses to biotic and abiotic stimuli.The double but not the single mutants show resistance to the fungal pathogenBotrytis cinerea.Interestingly, single mutants were tolerant to drought and the double mutant showed superior tolerance and plant growth consistent with independent and additive functions. Mutants maintained higher water status during drought and improved recovery and survival after lapse of drought.Notably, diminution of H3K4 and H3K36 trimethylation and expression of negative regulators in challenged plants contributes to stress tolerance of the mutants. Mutations inSDG33andSDG34are likely to remove predisposition to biotic and abiotic stress by disrupting permissive transcriptional context promoting expression of negative regulatory factors. These allows improvement of stress and pathogen tolerance, without growth trade‐offs, through modification of histone epigenetic marks.
more »
« less
Regulation of plant immunity and growth by tomato receptor‐like cytoplasmic kinase TRK1
Summary The molecular mechanisms of quantitative resistance (QR) to fungal pathogens and their relationships with growth pathways are poorly understood.We identified tomato TRK1 (TPK1b Related Kinase1) and determined its functions in tomato QR and plant growth. TRK1 is a receptor‐like cytoplasmic kinase that complexes with tomato LysM Receptor Kinase (SlLYK1).SlLYK1andTRK1are required for chitin‐induced fungal resistance, accumulation of reactive oxygen species, and expression of immune response genes. Notably, TRK1 and SlLYK1 regulate SlMYC2, a major transcriptional regulator of jasmonic acid (JA) responses and fungal resistance, at transcriptional and post‐transcriptional levels.Further, TRK1 is also required for maintenance of proper meristem growth, as revealed by the ectopic meristematic activity, enhanced branching, and altered floral structures inTRK1RNAi plants. Consistently, TRK1 interacts with SlCLV1 and SlWUS, andTRK1RNAi plants show increased expression ofSlCLV3andSlWUSin shoot apices. Interestingly, TRK1 suppresses chitin‐induced gene expression in meristems but promotes expression of the same genes in leaves. SlCLV1 and TRK1 perform contrasting functions in defense but similar functions in plant growth.Overall, through molecular and biochemical interactions with critical regulators, TRK1 links upstream defense and growth signals to downstream factor in fungal resistance and growth homeostasis response regulators.
more »
« less
- Award ID(s):
- 1916893
- PAR ID:
- 10374346
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 233
- Issue:
- 1
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 458-478
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Plants recognize a variety of environmental molecules, thereby triggering appropriate responses to biotic or abiotic stresses. Substances containing microbes-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs) are representative inducers of pathogen resistance and damage repair, thus treatment of healthy plants with such substances can pre-activate plant immunity and cell repair functions. In this study, the effects of DAMP/MAMP oligosaccharides mixture (Oligo-Mix) derived from plant cell wall (cello-oligosaccharide and xylo-oligosaccharide), and fungal cell wall (chitin-oligosaccharide) were examined in cucumber. Treatment of cucumber with Oligo-Mix promoted root germination and plant growth, along with increased chlorophyll contents in the leaves. Oligo-Mix treatment also induced typical defense responses such as MAP kinase activation and callose deposition in leaves. Pretreatment of Oligo-Mix enhanced disease resistance of cucumber leaves against pathogenic fungiPodosphaera xanthii(powdery mildew) andColletotrichum orbiculare(anthracnose). Oligo-Mix treatment increased the induction of hypersensitive cell death around the infection site of pathogens, which inhibited further infection and the conidial formation of pathogens on the cucumber leaves. RNA-seq analysis revealed that Oligo-Mix treatment upregulated genes associated with plant structural reinforcement, responses to abiotic stresses and plant defense. These results suggested that Oligo-Mix has beneficial effects on growth and disease resistance in cucumber, making it a promising biostimulant for agricultural application.more » « less
-
Abstract The hormones salicylic acid (SA) and jasmonic acid (JA) often act antagonistically in controlling plant defense pathways in response to hemibiotrophs/biotrophs (hemi/biotroph) and herbivores/necrotrophs, respectively. Threonine deaminase (TD) converts threonine to α-ketobutyrate and ammonia as the committed step in isoleucine (Ile) biosynthesis and contributes to JA responses by producing the Ile needed to make the bioactive JA–Ile conjugate. Tomato (Solanum lycopersicum) plants have two TD genes: TD1 and TD2. A defensive role for TD2 against herbivores has been characterized in relation to JA–Ile production. However, it remains unknown whether TD2 is also involved in host defense against bacterial hemi/biotrophic and necrotrophic pathogens. Here, we show that in response to the bacterial pathogen-associated molecular pattern (PAMP) flagellin flg22 peptide, an activator of SA-based defense responses, TD2 activity is compromised, possibly through carboxy-terminal cleavage. TD2 knockdown (KD) plants showed increased resistance to the hemibiotrophic bacterial pathogen Pseudomonas syringae but were more susceptible to the necrotrophic fungal pathogen Botrytis cinerea, suggesting TD2 plays opposite roles in response to hemibiotrophic and necrotrophic pathogens. This TD2 KD plant differential response to different pathogens is consistent with SA- and JA-regulated defense gene expression. flg22-treated TD2 KD plants showed high expression levels of SA-responsive genes, whereas TD2 KD plants treated with the fungal PAMP chitin showed low expression levels of JA-responsive genes. This study indicates TD2 acts negatively in defense against hemibiotrophs and positively against necrotrophs and provides insight into a new TD2 function in the elaborate crosstalk between SA and JA signaling induced by pathogen infection.more » « less
-
Abstract The green leaf volatiles (GLVs)Z‐3‐hexen‐1‐ol (Z3‐HOL) andZ‐3‐hexenyl acetate (Z3‐HAC) are airborne infochemicals released from damaged plant tissues that induce defenses and developmental responses in receiver plants, but little is known about their mechanism of action. We found that Z3‐HOL and Z3‐HAC induce similar but distinctive physiological and signaling responses in tomato seedlings and cell cultures. In seedlings, Z3‐HAC showed a stronger root growth inhibition effect than Z3‐HOL. In cell cultures, the two GLVs induced distinct changes in MAP kinase (MAPK) activity and proton fluxes as well as rapid and massive changes in the phosphorylation status of proteins within 5 min. Many of these phosphoproteins are involved in reprogramming the proteome from cellular homoeostasis to stress and include pattern recognition receptors, a receptor‐like cytoplasmic kinase, MAPK cascade components, calcium signaling proteins and transcriptional regulators. These are well‐known components of damage‐associated molecular pattern (DAMP) signaling pathways. These rapid changes in the phosphoproteome may underly the activation of defense and developmental responses to GLVs. Our data provide further evidence that GLVs function like DAMPs and indicate that GLVs coopt DAMP signaling pathways.more » « less
-
Abstract Autophagy, as an intracellular degradation system, plays a critical role in plant immunity. However, the involvement of autophagy in the plant immune system and its function in plant nematode resistance are largely unknown. Here, we show that root-knot nematode (RKN;Meloidogyne incognita) infection induces autophagy in tomato (Solanum lycopersicum) and differentatgmutants exhibit high sensitivity to RKNs. The jasmonate (JA) signaling negative regulators JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1), JAM2 and JAM3 interact with ATG8s via an ATG8-interacting motif (AIM), and JAM1 is degraded by autophagy during RKN infection. JAM1 impairs the formation of a transcriptional activation complex between ETHYLENE RESPONSE FACTOR 1 (ERF1) and MEDIATOR 25 (MED25) and interferes with transcriptional regulation of JA-mediated defense-related genes by ERF1. Furthermore, ERF1 acts in a positive feedback loop and regulates autophagy activity by transcriptionally activatingATGexpression in response to RKN infection. Therefore, autophagy promotes JA-mediated defense against RKNs via forming a positive feedback circuit in the degradation of JAMs and transcriptional activation by ERF1.more » « less
An official website of the United States government
