skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Edge and Point‐Defect Induced Electronic and Magnetic Properties in Monolayer PtSe 2
Abstract Edges and point defects in layered dichalcogenides are important for tuning their electronic and magnetic properties. By combining scanning tunneling microscopy (STM) with density functional theory (DFT), the electronic structure of edges and point defects in 2D‐PtSe2are investigated where the 1.8 eV bandgap of monolayer PtSe2facilitates the detailed characterization of defect‐induced gap states by STM. The stoichiometric zigzag edge terminations are found to be energetically favored. STM and DFT show that these edges exhibit metallic 1D states with spin polarized bands. Various native point defects in PtSe2are also characterized by STM. A comparison of the experiment with simulated images enables identification of Se‐vacancies, Pt‐vacancies, and Se‐antisites as the dominant defects in PtSe2. In contrast to Se‐ or Pt‐vacancies, the Se‐antisites are almost devoid of gap states. Pt‐vacancies exhibit defect induced states that are spin polarized, emphasizing their importance for inducing magnetism in PtSe2. The atomic‐scale insights into defect‐induced electronic states in monolayer PtSe2provide the fundamental underpinning for defect engineering of PtSe2‐monolayers and the newly identified spin‐polarized edge states offer prospects for engineering magnetic properties in PtSe2nanoribbons.  more » « less
Award ID(s):
2140038
PAR ID:
10374399
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
32
Issue:
18
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report a layered ternary selenide BaPt4Se6featuring sesqui-selenide Pt2Se3layers sandwiched by Ba atoms. The Pt2Se3layers in this compound can be derived from the Dirac-semimetal PtSe2phase with Se vacancies that form a honeycomb structure. This structure results in a Pt (VI) and Pt (II) mixed-valence compound with both PtSe6octahedra and PtSe4square net coordination configurations. Temperature-dependent electrical transport measurements suggest two distinct anomalies: a resistivity crossover, mimic to the metal-insulator (M-I) transition at ~150 K, and a resistivity plateau at temperatures below 10 K. The resistivity crossover is not associated with any structural, magnetic, or charge order modulated phase transitions. Magnetoresistivity, Hall, and heat capacity measurements concurrently suggest an existing hidden state below 5 K in this system. Angle-resolved photoemission spectroscopy measurements reveal a metallic state and no dramatic reconstruction of the electronic structure up to 200 K. 
    more » « less
  2. Abstract The interface between 2D topological Dirac states and ans‐wave superconductor is expected to support Majorana‐bound states (MBS) that can be used for quantum computing applications. Realizing these novel states of matter and their applications requires control over superconductivity and spin‐orbit coupling to achieve spin‐momentum‐locked topological interface states (TIS) which are simultaneously superconducting. While signatures of MBS have been observed in the magnetic vortex cores of bulk FeTe0.55Se0.45, inhomogeneity and disorder from doping make these signatures unclear and inconsistent between vortices. Here superconductivity is reported in monolayer (ML) FeTe1–ySey(Fe(Te,Se)) grown on Bi2Te3by molecular beam epitaxy (MBE). Spin and angle‐resolved photoemission spectroscopy (SARPES) directly resolve the interfacial spin and electronic structure of Fe(Te,Se)/Bi2Te3heterostructures. Fory = 0.25, the Fe(Te,Se) electronic structure is found to overlap with the Bi2Te3TIS and the desired spin‐momentum locking is not observed. In contrast, fory = 0.1, reduced inhomogeneity measured by scanning tunneling microscopy (STM) and a smaller Fe(Te,Se) Fermi surface with clear spin‐momentum locking in the topological states are found. Hence, it is demonstrated that the Fe(Te,Se)/Bi2Te3system is a highly tunable platform for realizing MBS where reduced doping can improve characteristics important for Majorana interrogation and potential applications. 
    more » « less
  3. Two-dimensional transition metal dichalcogenides (2D-TMDs) have been proposed as novel optoelectronic materials for space applications due to their relatively light weight. MoS2 has been shown to have excellent semiconducting and photonic properties. Although the strong interaction of ionizing gamma radiation with bulk materials has been demonstrated, understanding its effect on atomically thin materials has scarcely been investigated. Here, we report the effect of gamma irradiation on the structural and electronic properties of a monolayer of MoS2. We perform Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) studies of MoS2, before and after gamma ray irradiation with varying doses and density functional theory (DFT) calculations. The Raman spectra and XPS results demonstrate that point defects dominate after the gamma irradiation of MoS2. DFT calculations elucidate the electronic properties of MoS2 before and after irradiation. Our work makes several contributions to the field of 2D materials research. First, our study of the electronic density of states and the electronic properties of a MoS2 monolayer irradiated by gamma rays sheds light on the properties of a MoS2 monolayer under gamma irradiation. Second, our study confirms that point defects are formed as a result of gamma irradiation. And third, our DFT calculations qualitatively suggest that the conductivity of the MoS2 monolayer may increase after gamma irradiation due to the creation of additional defect states. 
    more » « less
  4. Abstract The ongoing reduction in transistor sizes drives advancements in information technology. However, as transistors shrink to the nanometer scale, surface and edge states begin to constrain their performance. 2D semiconductors like transition metal dichalcogenides (TMDs) have dangling‐bond‐free surfaces, hence achieving minimal surface states. Nonetheless, edge state disorder still limits the performance of width‐scaled 2D transistors. This work demonstrates a facile edge passivation method to enhance the electrical properties of monolayer WSe2nanoribbons, by combining scanning transmission electron microscopy, optical spectroscopy, and field‐effect transistor (FET) transport measurements. Monolayer WSe2nanoribbons are passivated with amorphous WOxSeyat the edges, which is achieved using nanolithography and a controlled remote O2plasma process. The same nanoribbons, with and without edge passivation are sequentially fabricated and measured. The passivated‐edge nanoribbon FETs exhibit 10 ± 6 times higher field‐effect mobility than the open‐edge nanoribbon FETs, which are characterized with dangling bonds at the edges. WOxSeyedge passivation minimizes edge disorder and enhances the material quality of WSe2nanoribbons. Owing to its simplicity and effectiveness, oxidation‐based edge passivation could become a turnkey manufacturing solution for TMD nanoribbons in beyond‐silicon electronics and optoelectronics. 
    more » « less
  5. ABSTRACT The synthesis of two‐dimensional transition metal dichalcogenide (2D‐TMD) materials gives rise to inherent defects, specifically chalcogen vacancies, due to thermodynamic equilibrium. Techniques such as chemical vapor deposition (CVD), metal‐organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), flux growth method, and mechanical exfoliation produce large‐scale, uniform 2D TMD films, either in bulk or monolayers. However, defects on the film surface impact its quality, and it is necessary to measure defect density. The phonon confinement model indicates that the first‐order Raman band frequency shift depends on defect density. Monolayer Molybdenum disulfide (MoS2) exhibits three phonon dispersions at the Brillouin zone edge (M point): out‐of‐plane optical phonon vibration (ZO), in‐plane longitudinal optical phonon vibration (LO), and in‐plane transverse optical phonon vibration (TO). The LO and ZO modes overlap with Raman in‐plane vibration (𝐸12g) and Raman out‐of‐plane vibration (𝐴1g), respectively, causing peak broadening. In the presence of defects, the Raman 𝐸12gvibration energy decreases due to a reduced restoring force constant. The Raman 𝐴1gvibration trend is random, influenced by both restoring force constant and mass. The study introduces a quantitative defect measurement technique for CVD‐grown monolayer MoS2using Raman 𝐸12gmode, employing sequential data processing algorithms to reveal defect density on the film surface. 
    more » « less