skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Statistics of Multi‐MeV Electron Drift‐Periodic Flux Oscillations Using Van Allen Probes Observations
Abstract Multi‐MeV electron drift‐periodic flux oscillations observed in Earth's radiation belts indicate radial transport and energization/de‐energization of these radiation belt core populations. Using multi‐year Van Allen Probes observations, a statistical analysis is conducted to understand the characteristics of this phenomenon. The results show that most of these flux oscillations result from resonant interactions with broadband ultralow frequency (ULF) waves and are indicators of ongoing radial diffusion. The occurrence frequency of flux oscillations is higher during high solar wind speed/dynamic pressure and geomagnetically active times; however, a large number of them were still observed under mild to moderate solar wind/geomagnetic conditions. The occurrence frequency is also highest (up to ∼30%) at low L‐shells () under various geomagnetic activity, suggesting the general presence of broadband ULF waves and radial diffusion at low L‐shells even during geomagnetically quiet times and showing the critical role of the electron phase space density radial gradient in forming drift‐periodic flux oscillations.  more » « less
Award ID(s):
2140933
PAR ID:
10374419
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
7
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Radiation belt electrons undergo frequent acceleration, transport, and loss processes under various physical mechanisms. One of the most prevalent mechanisms is radial diffusion, caused by the resonant interactions between energetic electrons and ULF waves in the Pc4‐5 band. An indication of this resonant interaction is believed to be the appearance of periodic flux oscillations. In this study, we report long‐lasting, drift‐periodic flux oscillations of relativistic and ultrarelativistic electrons with energies up to ∼7.7 MeV in the outer radiation belt, observed by the Van Allen Probes mission. During this March 2017 event, multi‐MeV electron flux oscillations at the electron drift frequency appeared coincidently with enhanced Pc5 ULF wave activity and lasted for over 10 h in the center of the outer belt. The amplitude of such flux oscillations is well correlated with the radial gradient of electron phase space density (PSD), with almost no oscillation observed near the PSD peak. The temporal evolution of the PSD radial profile also suggests the dominant role of radial diffusion in multi‐MeV electron dynamics during this event. By combining these observations, we conclude that these multi‐MeV electron flux oscillations are caused by the resonant interactions between electrons and broadband Pc5 ULF waves and are an indicator of the ongoing radial diffusion process during this event. They contain essential information of radial diffusion and have the potential to be further used to quantify the radial diffusion effects and aid in a better understanding of this prevailing mechanism. 
    more » « less
  2. Abstract The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1–2 days. By contrast, High‐Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing its dynamics. This in turn has an effect on the charged particles trapped in the outer radiation belt. Although the high‐energy electron flux enhancements have received considerable attention, the high‐energy electron flux enhancement pattern (L > 4) has not. This paper identifies 37 events with this enhancement pattern in the high‐energy electron flux during the Van Allen Probes era. We find the enhancements coincident with HSS occurrence. The interplanetary magnetic field (IMF) exhibits north/south Bz fluctuations of Alfvénic nature with moderate amplitudes. The high‐energy electron flux enhancements also correspond to long periods of auroral activity indicating a relationship to magnetotail dynamics. However, the AE index only reaches moderate values. Ultra‐Low Frequency waves were present in all of the events and whistler‐mode chorus waves were present in 89.1% of the events, providing a convenient scenario for wave‐particle interactions. The radial gradient of the ULF wave power related to theL, under the influence of the HSSs, is necessary to trigger the physical processes responsible for this type of high‐energy electron flux enhancement pattern. 
    more » « less
  3. Abstract Electron fluxes (20 eV–2 MeV, RBSP‐A satellite) show reasonable simple correlation with a variety of parameters (solar wind, IMF, substorms, ultralow frequency (ULF) waves, geomagnetic indices) over L‐shells 2–6. Removing correlation‐inflating common cycles and trends (using autoregressive and moving average terms in an ARMAX analysis) results in a 10 times reduction in apparent association between drivers and electron flux, although many are still statistically significant (p < 0.05). Corrected influences are highest in the 20 eV–1 keV and 1–2 MeV electrons, more modest in the midrange (2–40 keV). Solar wind velocity and pressure (but not number density), IMF magnitude (with lower influence ofBz), SME (a substorm measure), a ULF wave index, and geomagnetic indices Kp and SymH all show statistically significant associations with electron flux in the corrected individual ARMAX analyses. We postulate that only pressure, ULF waves, and substorms are direct drivers of electron flux and compare their influences in a combined analysis. SME is the strongest influence of these three, mainly in the eV and MeV electrons. ULF is most influential on the MeV electrons. Pressure shows a smaller positive influence and some indication of either magnetopause shadowing or simply compression on the eV electrons. While strictly predictive models may improve forecasting ability by including indirect driver and proxy parameters, and while these models may be made more parsimonious by choosing not to explicitly model time series behavior, our present analyses include time series variables in order to draw valid conclusions about the physical influences of exogenous parameters. 
    more » « less
  4. Abstract Many factors influence relativistic outer radiation belt electron fluxes, such as waves in the ultralow frequency (ULF) Pc5, very low frequency (VLF), and electromagnetic ion cyclotron (EMIC) frequency bands, seed electron flux, Dst disturbance levels, substorm occurrence, and solar wind inputs. In this work we compared relativistic electron flux poststorm versus prestorm using three methods of analysis: (1) multiple regression to predict flux values following storms, (2) multiple regression to predict the size and direction of the change in electron flux, and (3) multiple logistic regression to predict only the probability of the flux rising or falling. We determined which is the most predictive model and which factors are most influential. We found that a linear regression predicting the difference in prestorm and poststorm flux (Model 2) results in the highest validation correlations. The logistic regression used in Model 3 had slightly weaker predictive abilities than the other two models but had the most value in providing a prediction of the probability of the electron flux increasing after a storm. Of the variables used (ULF Pc5 and VLF, seed electrons, substorm activity, and EMIC waves), the most influential in the final model were ULF Pc5 waves and the seed electrons. IMF Bz, Dst, and solar wind number density, velocity, and pressure did not improve any of the models, and were deemed unnecessary for effective predictions. 
    more » « less
  5. Abstract Electromagnetic ion cyclotron (EMIC) waves effectively scatter relativistic electrons in Earth's radiation belts and energetic ions in the ring current. Empirical models parameterizing the EMIC wave characteristics are important elements of inner magnetosphere simulations. Two main EMIC wave populations included in such simulations are the population generated by plasma sheet injections and another population generated by magnetospheric compression due to the solar wind. In this study, we investigate a third class of EMIC waves, generated by hot plasma sheet ions modulated by compressional ultra‐low frequency (ULF) waves. Such ULF‐modulated EMIC waves are mostly observed on the dayside, between magnetopause and the outer radiation belt edge. We show that ULF‐modulated EMIC waves are weakly oblique (with a wave normal angle ) and narrow‐banded (with a spectral width of of the mean frequency). We construct an empirical model of the EMIC wave characteristics as a function of ‐shell and MLT. The low ratio of electron plasma frequency to electron gyrofrequency around the EMIC wave generation region does not allow these waves to scatter energetic electrons. However, these waves provide very effective (comparable to strong diffusion) quasi‐periodic precipitation of plasma sheet protons. 
    more » « less