skip to main content


Title: Synthesis, Elasticity, and Spin State of an Intermediate MgSiO 3 ‐FeAlO 3 Bridgmanite: Implications for Iron in Earth's Lower Mantle
Abstract

Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3bridgmanite (FA50) with the highest Fe3+‐Al3+coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions, the FA50 adopted the LiNbO3structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2,600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yieldsV0 = 172.1(4) Å3,K0 = 229(4) GPa withK0′ = 4(fixed). The calculated bulk sound velocity of the FA50 bridgmanite is ~7.7% lower than MgSiO3bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing, ~6% of Fe3+cations exchanged with Al3+and underwent the high‐ to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+increased gradually with pressure and reached 17–31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle.

 
more » « less
Award ID(s):
1829273 1555388 1565708 1722969
NSF-PAR ID:
10374450
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
125
Issue:
7
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Iron nitrides are possible constituents of the cores of Earth and other terrestrial planets. Pressure‐induced magnetic changes in iron nitrides and effects on compressibility remain poorly understood. Here we report synchrotron X‐ray emission spectroscopy (XES) and X‐ray diffraction (XRD) results for ε‐Fe7N3and γ′‐Fe4N up to 60 GPa at 300 K. The XES spectra reveal completion of high‐ to low‐spin transition in ε‐Fe7N3and γ′‐Fe4N at 43 and 34 GPa, respectively. The completion of the spin transition induces stiffening in bulk modulus of ε‐Fe7N3by 22% at ~40 GPa, but has no resolvable effect on the compression behavior of γ′‐Fe4N. Fitting pressure‐volume data to the Birch‐Murnaghan equation of state yieldsV0 = 83.29 ± 0.03 (Å3),K0 = 232 ± 9 GPa,K0′ = 4.1 ± 0.5 for nonmagnetic ε‐Fe7N3above the spin transition completion pressure, andV0 = 54.82 ± 0.02 (Å3),K0 = 152 ± 2 GPa,K0′ = 4.0 ± 0.1 for γ′‐Fe4N over the studied pressure range. By reexamining evidence for spin transition and effects on compressibility of other candidate components of terrestrial planet cores, Fe3S, Fe3P, Fe7C3, and Fe3C based on previous XES and XRD measurements, we located the completion of high‐ to low‐spin transition at ~67, 38, 50, and 30 GPa at 300 K, respectively. The completion of spin transitions of Fe3S, Fe3P, and Fe3C induces elastic stiffening, whereas that of Fe7C3induces elastic softening. Changes in compressibility at completion of spin transitions in iron‐light element alloys may influence the properties of Earth's and planetary cores.

     
    more » « less
  2. Abstract

    We present ab initio (LDA + Usc) studies of high‐temperature and high‐pressure elastic properties of pure as well as iron‐bearing (ferrous, Fe2+, and ferric, Fe3+) and aluminum‐bearing MgSiO3postperovskite, the likely dominant phase in the deep lower mantle of the Earth. Thermal effects are addressed within the quasiharmonic approximation by combining vibrational density of states and static elastic coefficients. Aggregate elastic moduli and sound velocities for the Mg end members are successfully compared with scarce experimental data available. Effects of iron (Fe) and aluminum (Al) substitutions on elastic properties and their pressure and temperature dependence have been thoroughly investigated. At the observed perovskite to postperovskite transition (P = 125 GPa andT = 2,500 K), compressional and shear velocities increase by 0–1% and 1.5–3.75%, respectively. This observation is consistent with some seismic studies of the Ddiscontinuity beneath the Caribbean, which suggests that our robust estimates of elastic properties of the postperovskite phase will be very helpful to understand lateral velocity variations in the deep lower mantle region and to constrain its composition and thermal structure.

     
    more » « less
  3. Abstract

    Large Low Shear Velocity Provinces (LLSVPs) in the lowermost mantle are key to understanding the chemical composition and thermal structure of the deep Earth, but their origins have long been debated. Bridgmanite, the most abundant lower-mantle mineral, can incorporate extensive amounts of iron (Fe) with effects on various geophysical properties. Here our high-pressure experiments and ab initio calculations reveal that a ferric-iron-rich bridgmanite coexists with an Fe-poor bridgmanite in the 90 mol% MgSiO3–10 mol% Fe2O3system, rather than forming a homogeneous single phase. The Fe3+-rich bridgmanite has substantially lower velocities and a higherVP/VSratio than MgSiO3bridgmanite under lowermost-mantle conditions. Our modeling shows that the enrichment of Fe3+-rich bridgmanite in a pyrolitic composition can explain the observed features of the LLSVPs. The presence of Fe3+-rich materials within LLSVPs may have profound effects on the deep reservoirs of redox-sensitive elements and their isotopes.

     
    more » « less
  4. Abstract

    The amount of ferric iron Fe3+in the lower mantle is largely unknown and may be influenced by the disproportionation reaction of ferrous iron Fe2+into metallic Fe and Fe3+triggered by the formation of bridgmanite. Recent work has shown that Fe3+has a strong effect on the density and seismic wave speeds of bridgmanite and the incorporation of impurities such as aluminum. In order to further investigate the effects of ferric iron on mineral behavior at lower mantle conditions, we conducted laser‐heated diamond‐anvil cell (LHDAC) experiments on two sets of samples nearly identical in composition (an aluminum‐rich pyroxenite glass) except for the Fe3+content; with one sample with more Fe3+(“oxidized”: Fe3+/ΣFe ~ 55%) and the other with less Fe3+(“reduced”: Fe3+/ΣFe ~ 11%). We heated the samples to lower mantle conditions, and the resulting assemblages were drastically different between the two sets of samples. For the reduced composition, we observed a multiphase assemblage dominated by bridgmanite and calcium perovskite. In contrast, the oxidized material yielded a single phase of Ca‐bearing bridgmanite. These Al‐rich pyroxenite samples show a difference in density and seismic velocities for these two redox states, where the reduced assemblage is denser than the oxidized assemblage by ~1.5% at the bottom of the lower mantle and slower (bulk sound speed) by ~2%. Thus, heterogeneities of Fe3+content may lead to density and seismic wave speed heterogeneities in Earth's lower mantle.

     
    more » « less
  5. Abstract

    The thermal conductivity of bridgmanite, the primary constituent of the Earth's lower mantle, has been investigated using diamond anvil cells at pressures up to 85 GPa and temperatures up to 3,100 K. We report the results of time‐domain optical laser flash heating and X‐ray Free Electron Laser heating experiments from a variety of bridgmanite samples with different Al and Fe contents. The results demonstrate that Fe or Fe,Al incorporation in bridgmanite reduces thermal conductivity by about 50% in comparison to end‐member MgSiO3at the pressure‐temperature conditions of Earth's lower mantle. The effect of temperature on the thermal conductivity at 28–60 GPa is moderate, well described as , whereais 0.2–0.5. The results yield thermal conductivity of 7.5–15 W/(m × K) in the thermal boundary layer of the lowermost mantle composed of Fe,Al‐bearing bridgmanite.

     
    more » « less