The climate's response to forcing depends on how efficiently heat is absorbed by the ocean. Much, if not most, of this ocean heat uptake results from the passive transport of warm surface waters into the ocean's interior. Here we examine how geographic patterns of surface warming influence the efficiency of this passive heat uptake process. We show that the average pattern of surface warming in CMIP5 damps passive ocean heat uptake efficiency by nearly 25%, as compared to homogeneous surface warming. This “pattern effect” occurs because strong ventilation and weak surface warming are robustly colocated, particularly in the Southern Ocean. However, variations in warming patterns across CMIP5 do not drive significant ensemble spread in passive ocean heat uptake efficiency. This spread is likely linked to intermodel differences in ocean circulation, which our idealized results suggest may be dominated by differences in Southern Ocean and subtropical ventilation processes.
The storage of anomalous heat and carbon in the Southern Ocean in response to increasing greenhouse gases greatly mitigates atmospheric warming and exerts a large impact on the marine ecosystem. However, the mechanisms driving the ocean storage patterns are uncertain. Here using recent hydrographic observations, we compare for the first time the spatial patterns of heat and carbon storage, which show substantial differences in the Southern Ocean, in contrast with the conventional view of simple passive subduction into the thermocline. Using an eddy‐rich global climate model, we demonstrate that redistribution of the preindustrial temperature field is the dominant control on the heat storage pattern, whereas carbon storage largely results from passive transport of anthropogenic carbon uptake at the surface. Lastly, this study highlights the importance of realistic representation of wind and surface buoyancy flux in climate models to improve future projection of circulation change and thus heat and carbon storage.
more » « less- PAR ID:
- 10374475
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 46
- Issue:
- 6
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- p. 3359-3367
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Large volcanic eruptions drive significant climate perturbations through major anomalies in radiative fluxes and the resulting widespread cooling of the surface and upper ocean. Recent studies suggest that these eruptions also drive important variability in air‐sea carbon and oxygen fluxes. By simulating the Earth system using two initial‐condition large ensembles, with and without the aerosol forcing associated with the Mt. Pinatubo eruption in June 1991, we isolate the impact of this volcanic event on physical and biogeochemical properties of the ocean. The Mt. Pinatubo eruption forced significant anomalies in surface fluxes and the ocean interior inventories of heat, oxygen, and carbon. Pinatubo‐driven changes persist for multiple years in the upper ocean and permanently modify the ocean's heat, oxygen, and carbon inventories. Positive anomalies in oxygen concentrations emerge immediately post‐eruption and penetrate into the deep ocean. In contrast, carbon anomalies intensify in the upper ocean over several years post‐eruption, and are largely confined to the upper 150 m. In the tropics and northern high latitudes, the change in oxygen is dominated by surface cooling and subsequent ventilation to mid‐depths, while the carbon anomaly is associated with solubility changes and eruption‐generated El Niño—Southern Oscillation variability. We do not find significant impact of Pinatubo on oxygen or carbon fluxes in the Southern Ocean; but this may be due to Southern Hemisphere aerosol forcing being underestimated in Community Earth System Model 1 simulations.
-
Abstract As the major sink of anthropogenic heat, the Southern Ocean has shown quasi-symmetric, deep-reaching warming since the mid-twentieth century. In comparison, the shorter-term heat storage pattern of the Southern Ocean is more complex and has notable impacts on regional climate and marine ecosystems. By analyzing observational datasets and climate model simulations, this study reveals that the Southern Ocean exhibits prominent decadal (>8 years) variability extending to ∼700-m depth and is characterized by out-of-phase changes in the Pacific and Atlantic–Indian Ocean sectors. Changes in the Pacific sector are larger in magnitude than those in the Atlantic–Indian Ocean sectors and dominate the total heat storage of the Southern Ocean on decadal time scales. Instead of heat uptake through surface heat fluxes, these asymmetric variations arise primarily from wind-driven heat redistribution. Pacemaker and preindustrial simulations of the Community Earth System Model version 1 (CESM1) suggest that these variations in Southern Ocean winds arise primarily from natural variability of the tropical Pacific, as represented by the interdecadal Pacific oscillation (IPO). Through atmospheric teleconnection, the positive phase of the IPO gives rise to higher-than-normal sea level pressure and anticyclonic wind anomalies in the 50°–70°S band of the Pacific sector. These winds lead to warming of 0–700 m by driving the convergence of warm water. The opposite processes, involving cyclonic winds and upper-layer divergence, occur in the Atlantic–Indian Ocean sector. These findings aid our understanding of the time-varying heat storage of the Southern Ocean and provide useful implications on initialized decadal climate prediction.
-
Abstract Ocean warming patterns are a primary control on regional sea level rise and transient climate sensitivity. However, controls on these patterns in both observations and models are not fully understood, complicated as they are by their dependence on the “addition” of heat to the ocean’s interior along background ventilation pathways and on the “redistribution” of heat between regions by changing ocean dynamics. While many previous studies attribute heat redistribution to changes in high-latitude processes, here we propose that substantial heat redistribution is explained by the large-scale adjustment of the geostrophic flow to warming within the pycnocline. We explore this hypothesis in the University of Victoria Earth System Model, estimating added heat using the transport matrix method. We find that throughout the midlatitudes, subtropics, and tropics, patterns of added and redistributed heat in the model are strongly anticorrelated (
R ≈ −0.75). We argue that this occurs because changes in ocean currents, acting across pre-existing temperature gradients, redistribute heat away from regions of strong passive heat convergence. Over broad scales, this advective response can be estimated from changes in upper-ocean density alone using the thermal wind relation and is linked to an adjustment of the subtropical pycnocline. These results highlight a previously unappreciated relationship between added and redistributed heat and emphasize the role that subtropical and midlatitude dynamics play in setting patterns of ocean heat storage.Significance Statement The point of our study was to better understand the geographic pattern of ocean warming caused by human-driven climate change. Warming patterns are challenging to predict because they are sensitive both to how the ocean absorbs heat from the atmosphere and to how ocean currents change in response to increased emissions. We showed that these processes are not independent of one another: in many regions, changes in ocean currents reduce regional variations in the build-up of new heat absorbed from the atmosphere. This finding may help to constrain future projections of regional ocean warming, which matters because ocean warming patterns have a major influence on regional sea level rise, marine ecosystem degradation, and the rate of atmospheric warming.
-
Abstract How do ocean initial states impact historical and future climate projections in Earth system models? To answer this question, we use the 50-member Canadian Earth System Model (CanESM2) large ensemble, in which individual ensemble members are initialized using a combination of different oceanic initial states and atmospheric microperturbations. We show that global ocean heat content anomalies associated with the different ocean initial states, particularly differences in deep ocean heat content due to ocean drift, persist from initialization at year 1950 through the end of the simulations at year 2100. We also find that these anomalies most readily impact surface climate over the Southern Ocean. Differences in ocean initial states affect Southern Ocean surface climate because persistent deep ocean temperature anomalies upwell along sloping isopycnal surfaces that delineate neighboring branches of the upper and lower cells of the global meridional overturning circulation. As a result, up to a quarter of the ensemble variance in Southern Ocean turbulent heat fluxes, heat uptake, and surface temperature trends can be traced to variance in the ocean initial state, notably deep ocean temperature differences of order 0.1 K due to model drift. Such a discernible impact of varying ocean initial conditions on ensemble variance over the Southern Ocean is evident throughout the full 150 simulation years of the ensemble, even though upper ocean temperature anomalies due to varying ocean initial conditions rapidly dissipate over the first two decades of model integration over much of the rest of the globe.