Abstract Utilizing magnetic field measurements made by the Iridium satellites and by ground magnetometers in North America we calculate the full ionospheric current system and investigate the substorm current wedge. The current estimates are independent of ionospheric conductance, and are based on estimates of the divergence‐free (DF) ionospheric current from ground magnetometers and curl‐free (CF) ionospheric currents from Iridium. The DF and CF currents are represented using spherical elementary current systems (SECS), derived using a new inversion scheme that ensures the current systems' spatial scales are consistent. We present 18 substorm events and find a typical substorm current wedge (SCW) in 12 events. Our investigation of these substorms shows that during substorm expansion, equivalent field‐aligned currents (EFACs) derived with ground magnetometers are a poor proxy of the actual FAC. We also find that the intensification of the westward electrojet can occur without an intensification of the FACs. We present theoretical investigations that show that the observed deviation between FACs estimated with satellite measurements and ground‐based EFACs are consistent with the presence of a strong local enhancement of the ionospheric conductance, similar to the substorm bulge. Such enhancements of the auroral conductance can also change the ionospheric closure of pre‐existing FACs such that the ground magnetic field, and in particular the westward electrojet, changes significantly. These results demonstrate that attributing intensification of the westward electrojet to SCW current closure can yield false understanding of the ionospheric and magnetospheric state. 
                        more » 
                        « less   
                    
                            
                            Derivation of Hemispheric Ionospheric Current Functions From Ground‐Level Magnetic Fields
                        
                    
    
            Abstract The horizontal currents in the high‐latitude ionosphere are the primary driver of the magnetic field perturbations that are observed at the surface of the Earth. These currents and their ground effects are an important aspect of the magnetosphere‐ionosphere coupling process. This paper discusses the method of inversion that uses spherical harmonic potential function, in which magnetic field measurements on the ground can be used to derive maps of the “ionospheric equivalent currents,” a mathematical representation of the horizontal currents flowing on a thin shell. It is shown that the use of both internal telluric and external current sources is required when fitting the spherical harmonic series; otherwise, the ionospheric currents will be overestimated. Furthermore, the inversion needs to compensate for magnetic effects of the magnetospheric ring current; otherwise, this current is projected onto the ionosphere. The amplification of the surface horizontal magnetic field and the suppression of the vertical magnetic field are demonstrated. The equivalent currents may be useful for estimating the ionospheric conductivity values. Additionally, these currents can be compared with the results from simulation models as a means of validation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1638270
- PAR ID:
- 10374478
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 124
- Issue:
- 4
- ISSN:
- 2169-9380
- Page Range / eLocation ID:
- p. 3149-3161
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract A circuit analogy for magnetosphere‐ionosphere current systems has two extremes for drivers of ionospheric currents: the “voltage generator” (ionospheric electric fields/voltages are constant, while current varies) and the “current generator” (current is constant, while the electric field varies). Here we indicate another aspect of the magnetosphere‐ionosphere interaction, which should be taken into account when considering the current/voltage dichotomy. We show that nonsteady field‐aligned currents interact with the ionosphere in a different way depending on a forced driving or resonant excitation. A quasi‐DC driving of field‐aligned current corresponds to a voltage generator, when the ground magnetic response is proportional to the ionospheric Hall conductance. The excitation of resonant field line oscillations corresponds to the current generator, when the ground magnetic response only weakly depends on the ionospheric conductance. According to the suggested conception, quasi‐DC nonresonant disturbances correspond to a voltage generator. Such ultralow frequency (ULF) phenomena as traveling convection vortices and Pc5 waves should be considered as the resonant response of magnetospheric field lines, and they correspond to a current generator. However, there are quite a few factors that may obscure the determination of the current/voltage dichotomy.more » « less
- 
            Abstract Surface waves on Earth's magnetopause have a controlling effect upon global magnetospheric dynamics. Since spacecraft provide sparse in situ observation points, remote sensing these modes using ground‐based instruments in the polar regions is desirable. However, many open conceptual questions on the expected signatures remain. Therefore, we provide predictions of key qualitative features expected in auroral, ionospheric, and ground magnetic observations through both magnetohydrodynamic theory and a global coupled magnetosphere‐ionosphere simulation of a magnetopause surface eigenmode. These show monochromatic oscillatory field‐aligned currents (FACs), due to both the surface mode and its non‐resonant Alfvén coupling, are present throughout the magnetosphere. The currents peak in amplitude at the equatorward edge of the magnetopause boundary layer, not the open‐closed boundary as previously thought. They also exhibit slow poleward phase motion rather than being purely evanescent. We suggest the upward FAC perturbations may result in periodic auroral brightenings. In the ionosphere, convection vortices circulate the poleward moving FAC structures. Finally, surface mode signals are predicted in the ground magnetic field, with ionospheric Hall currents rotating perturbations by approximately (but not exactly) 90° compared to the magnetosphere. Thus typical dayside magnetopause surface modes should be strongest in the East‐West ground magnetic field component. Overall, all ground‐based signatures of the magnetopause surface mode are predicted to have the same frequency acrossL‐shells, amplitudes that maximize near the magnetopause's equatorward edge, and larger latitudinal scales than for field line resonance. Implications in terms of ionospheric Joule heating and geomagnetically induced currents are discussed.more » « less
- 
            A circuit analogy for magnetosphere-ionosphere current systems has two extremes for drivers of ionospheric currents: the “voltage generator” (ionospheric electric fields/voltages are constant, while current varies) and the “current generator” (current is constant, while the electric field varies). Here we indicate another aspect of the magnetosphere-ionosphere interaction, which should be taken into account when considering the current/voltage dichotomy. We show that nonsteady field-aligned currents interact with the ionosphere in a different way depending on a forced driving or resonant excitation. A quasi-DC driving of field-aligned current corresponds to a voltage generator, when the ground magnetic response is proportional to the ionospheric Hall conductance. The excitation of resonant field line oscillations corresponds to the current generator, when the ground magnetic response only weakly depends on the ionospheric conductance. According to the suggested conception, quasi-DC nonresonant disturbances correspond to a voltage generator. Such ultralow frequency (ULF) phenomena as traveling convection vortices and Pc5 waves should be considered as the resonant response of magnetospheric field lines, and they correspond to a current generator. However, there are quite a few factors that may obscure the determination of the current/voltage dichotomy.more » « less
- 
            An earthquake is a seismic event resulting from a sudden release of energy in the lithosphere, which produces waves that can propagate through the atmosphere into the ionosphere, causing ionospheric disturbances, and excites an additional electric field in the lower ionosphere. Two large-scale traveling ionospheric disturbances (LSTIDs) at daytime Turkey longitudes were found, with phase speeds of 534 and 305 m/s, respectively, after the second strong earthquake at 10:24 UT on 6 February 2023. During strong earthquakes, the equatorial ionospheric currents including the E-region equatorial electrojet (EEJ) and F-region ionospheric radial current (IRC) might be perturbed. At the Tatuoca station in Brazil, we observed a stronger-than-usual horizontal magnetic field associated with the EEJ, with a magnitude of ~100 nT. EEJ perturbations are mainly controlled by neutral winds, especially zonal winds. In the equatorial F-region, a wave perturbation of the IRC was caused by a balance of the electric field generated by the zonal winds at ~15° MLat, the F-region local winds driven by atmospheric resonance, and the additional polarization electric field. Our findings better the understanding of the complex interplay between seismic events and ionospheric current disturbances.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
