skip to main content


Title: The generation of kinetic energy in tropical cyclones revisited

Many previous diagnoses of the global kinetic energy budget for a tropical cyclone have given prominence to the global integral of a pressure–work term in the generation of kinetic energy. However, in his erudite textbookAtmosphere–Ocean Dynamics, Adrian Gill derives a form of the kinetic energy equation in which there is no such explicit source term. In this article we revisit the interpretations of the generation of kinetic energy given previously in light of Gill's analysis and compare the various interpretations, which are non‐unique. Further, although global energetics provide a constraint on the flow evolution, in the context of the kinetic energy equation they conceal important aspects of energy generation and consumption, a finding which highlights the limitations of a global kinetic energy budget in revealing the underlying dynamics of tropical cyclones.

 
more » « less
NSF-PAR ID:
10374510
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Quarterly Journal of the Royal Meteorological Society
Volume:
144
Issue:
717
ISSN:
0035-9009
Page Range / eLocation ID:
p. 2481-2490
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The evolution of wind-generated near-inertial waves (NIWs) is known to be influenced by the mesoscale eddy field, yet it remains a challenge to disentangle the effects of this interaction in observations. Here, the model of Young and Ben Jelloul (YBJ), which describes NIW evolution in the presence of slowly evolving mesoscale eddies, is compared to observations from a mooring array in the northeast Atlantic Ocean. The model captures the evolution of both the observed NIW amplitude and phase much more accurately than a slab mixed layer model. The YBJ model allows for the identification of specific physical processes that drive the observed evolution. It reveals that differences in the NIW amplitude across the mooring array are caused by the refractive concentration of NIWs into anticyclones. Advection and wave dispersion also make important contributions to the observed wave evolution. Stimulated generation, a process by which mesoscale kinetic energy acts as a source of NIW potential energy, is estimated to be 20μW m−2in the region of the mooring array, which is two orders of magnitude smaller than the global average input to mesoscale kinetic energy and likely not an important contribution to the mesoscale kinetic energy budget in this region. Overall, the results show that the YBJ model is a quantitatively useful tool to interpret observations of NIWs.

     
    more » « less
  2. Abstract

    Constraining unforced and forced climate variability impacts interpretations of past climate variations and predictions of future warming. However, comparing general circulation models (GCMs) and last millennium Holocene hydroclimate proxies reveals significant mismatches between simulated and reconstructed low-frequency variability at multidecadal and longer time scales. This mismatch suggests that existing simulations underestimate either external or internal drivers of climate variability. In addition, large differences arise across GCMs in both the magnitude and spatial pattern of low-frequency climate variability. Dynamical understanding of forced and unforced variability is expected to contribute to improved interpretations of paleoclimate variability. To that end, we develop a framework for fingerprinting spatiotemporal patterns of temperature variability in forced and unforced simulations. This framework relies on two frequency-dependent metrics: 1) degrees of freedom (≡N) and 2) spatial coherence. First, we useNand spatial coherence to characterize variability across a suite of both preindustrial control (unforced) and last-millennium (forced) GCM simulations. Overall, we find that, at low frequencies and when forcings are added, regional independence in the climate system decreases, reflected in fewerNand higher coherence between local and global mean surface temperature. We then present a simple three-box moist-static-energy-balance model for temperature variability, which is able to emulate key frequency-dependent behavior in the GCMs. This suggests that temperature variability in the GCM ensemble can be understood through Earth’s energy budget and downgradient energy transport, and allows us to identify sources of polar-amplified variability. Finally, we discuss insights the three-box model can provide into model-to-model GCM differences.

    Significance Statement

    Forced and unforced temperature variability are poorly constrained and understood, particularly that at time scales longer than a decade. Here, we identify key differences in the time scale–dependent behavior of forced and unforced temperature variability using a combination of numerical climate models and principles of downgradient energy transport. This work, and the spatiotemporal characterizations of forced and unforced temperature variability that we generate, will aid in interpretations of proxy-based paleoclimate reconstructions and improve mechanistic understanding of variability.

     
    more » « less
  3. Abstract

    We compare the performance of energy-based and entropy-conserving schemes for modeling nonthermal energy components, such as unresolved turbulence and cosmic rays, using idealized fluid dynamics tests and isolated galaxy simulations. While both methods are aimed to model advection and adiabatic compression or expansion of different energy components, the energy-based scheme numerically solves the nonconservative equation for the energy density evolution, while the entropy-conserving scheme uses a conservative equation for modified entropy. Using the standard shock tube and Zel’dovich pancake tests, we show that the energy-based scheme results in a spurious generation of nonthermal energy on shocks, while the entropy-conserving method evolves the energy adiabatically to machine precision. We also show that, in simulations of an isolatedLgalaxy, switching between the schemes results in ≈20%–30% changes of the total star formation rate and a significant difference in morphology, particularly near the galaxy center. We also outline and test a simple method that can be used in conjunction with the entropy-conserving scheme to model the injection of nonthermal energies on shocks. Finally, we discuss how the entropy-conserving scheme can be used to capture the kinetic energy dissipated by numerical viscosity into the subgrid turbulent energyimplicitly, without explicit source terms that require calibration and can be rather uncertain. Our results indicate that the entropy-conserving scheme is the preferred choice for modeling nonthermal energy components, a conclusion that is equally relevant for Eulerian and moving-mesh fluid dynamics codes.

     
    more » « less
  4. Abstract

    The dissipative mechanism in weakly collisional plasma is a topic that pervades decades of studies without a consensus solution. We compare several energy dissipation estimates based on energy transfer processes in plasma turbulence and provide justification for the pressure–strain interaction as a direct estimate of the energy dissipation rate. The global and scale-by-scale energy balances are examined in 2.5D and 3D kinetic simulations. We show that the global internal energy increase and the temperature enhancement of each species are directly tracked by the pressure–strain interaction. The incompressive part of the pressure–strain interaction dominates over its compressive part in all simulations considered. The scale-by-scale energy balance is quantified by scale filtered Vlasov–Maxwell equations, a kinetic plasma approach, and the lag dependent von Kármán–Howarth equation, an approach based on fluid models. We find that the energy balance is exactly satisfied across all scales, but the lack of a well-defined inertial range influences the distribution of the energy budget among different terms in the inertial range. Therefore, the widespread use of the Yaglom relation in estimating the dissipation rate is questionable in some cases, especially when the scale separation in the system is not clearly defined. In contrast, the pressure–strain interaction balances exactly the dissipation rate at kinetic scales regardless of the scale separation.

     
    more » « less
  5. Abstract

    Three control problems for the system of two coupled differential equations governing the dynamics of an energy harvesting model are studied. The system consists of the equation of an Euler–Bernoulli beam model and the equation representing the Kirchhoff's electric circuit law. Both equations contain coupling terms representing the inverse and direct piezoelectric effects. The system is reformulated as a single evolution equation in the state space of 3‐component functions. The control is introduced as a separable forcing term on the right‐hand side of the operator equation. The first control problem deals with an explicit construction of that steers an initial state to zero on a time interval [0,T]. The second control problem deals with the construction of such that the voltage output is equal to some given function (with being given as well). The third control problem deals with an explicit construction of both the force profile, , and the control, , which generate the desired voltage output . Interpolation theory in the Hardy space of analytic functions is used in the solution of the second and third problems.

     
    more » « less