Abstract Carbon use efficiency (CUE) represents how efficient a plant is at translating carbon gains through gross primary productivity (GPP) into net primary productivity (NPP) after respiratory costs (Ra). CUE varies across space with climate and species composition, but how CUE will respond to climate change is largely unknown due to uncertainty inRaat novel high temperatures. We use a plant physiological model validated against global CUE observations and LIDAR vegetation canopy height data and find that model‐predicted decreases in CUE are diagnostic of transitions from forests to shrubland at dry range edges. Under future climate scenarios, we show mean growing season CUE increases in core forested areas, but forest extent decreases at dry range edges, with substantial uncertainty in absolute CUE due to uncertainty inRa. Our results highlight that future forest resilience is nuanced and controlled by multiple competing mechanisms.
more »
« less
Structure and parameter uncertainty in centennial projections of forest community structure and carbon cycling
Abstract Secondary forest regrowth shapes community succession and biogeochemistry for decades, including in the Upper Great Lakes region. Vegetation models encapsulate our understanding of forest function, and whether models can reproduce multi‐decadal succession patterns is an indication of our ability to predict forest responses to future change. We test the ability of a vegetation model to simulate C cycling and community composition during 100 years of forest regrowth following stand‐replacing disturbance, asking (a) Which processes and parameters are most important to accurately model Upper Midwest forest succession? (b) What is the relative importance of model structure versus parameter values to these predictions? We ran ensembles of the Ecosystem Demography model v2.2 with different representations of processes important to competition for light. We compared the magnitude of structural and parameter uncertainty and assessed which sub‐model–parameter combinations best reproduced observed C fluxes and community composition. On average, our simulations underestimated observed net primary productivity (NPP) and leaf area index (LAI) after 100 years and predicted complete dominance by a single plant functional type (PFT). Out of 4,000 simulations, only nine fell within the observed range of both NPP and LAI, but these predicted unrealistically complete dominance by either early hardwood or pine PFTs. A different set of seven simulations were ecologically plausible but under‐predicted observed NPP and LAI. Parameter uncertainty was large; NPP and LAI ranged from ~0% to >200% of their mean value, and any PFT could become dominant. The two parameters that contributed most to uncertainty in predicted NPP were plant–soil water conductance and growth respiration, both unobservable empirical coefficients. We conclude that (a) parameter uncertainty is more important than structural uncertainty, at least for ED‐2.2 in Upper Midwest forests and (b) simulating both productivity and plant community composition accurately without physically unrealistic parameters remains challenging for demographic vegetation models.
more »
« less
- Award ID(s):
- 1655095
- PAR ID:
- 10374517
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 26
- Issue:
- 11
- ISSN:
- 1354-1013
- Page Range / eLocation ID:
- p. 6080-6096
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Soil moisture and evapotranspiration (ET) are important components of boreal forest hydrology that affect ecological processes and land‐atmosphere feedbacks. Future trends in soil moisture in particular are uncertain. Therefore, accurate modeling of these dynamics and understanding of concomitant sources of uncertainty are critical. Here, we conduct a global sensitivity analysis, Monte Carlo parameterization, and analysis of parameter uncertainty and its contribution to future soil moisture and ET uncertainty using a physically based ecohydrologic model in multiple boreal forest types. Soil and plant hydraulic parameters and LAI have the largest effects on simulated summer soil moisture at two contrasting sites. In future scenario simulations, the selection of parameters and global climate model (GCM) choice between two GCMs influence projected changes in soil moisture and ET about as much as the projected effects of climate change in the less sensitive GCM with a late‐century, high‐emissions scenario, though the relative effects of parameters, GCM, and climate vary among hydrologic variables and study sites. Saturated volumetric water content and sensitivity of stomatal conductance to vapor pressure deficit have the most statistically significant effects on change in ET and soil moisture, though there is considerable variability between sites and GCMs. The results of this study provide estimates of: (a) parameter importance and statistical significance for soil moisture modeling, (b) parameter values for physically based soil‐vegetation‐atmosphere transfer models in multiple boreal forest types, and (c) the contributions of uncertainty in these parameters to soil moisture and ET uncertainty in future climates.more » « less
-
Abstract Simulations of the land surface carbon cycle typically compress functional diversity into a small set of plant functional types (PFT), with parameters defined by the average value of measurements of functional traits. In most earth system models, all wild plant life is represented by between five and 14 PFTs and a typical grid cell (≈100 × 100 km) may contain a single PFT. Model logic applied to this coarse representation of ecological functional diversity provides a reasonable proxy for the carbon cycle, but does not capture the non‐linear influence of functional traits on productivity. Here we show through simulations using the Energy Exascale Land Surface Model in 15 diverse terrestrial landscapes, that better accounting for functional diversity markedly alters predicted total carbon uptake. The shift in carbon uptake is as great as 30% and 10% in boreal and tropical regions, respectively, when compared to a single PFT parameterized with the trait means. The traits that best predict gross primary production vary based on vegetation phenology, which broadly determines where traits fall within the global distribution. Carbon uptake is more closely associated with specific leaf area for evergreen PFTs and the leaf carbon to nitrogen ratio in deciduous PFTs.more » « less
-
As the Arctic region moves into uncharted territory under a warming climate, it is important to refine the terrestrial biosphere models (TBMs) that help us understand and predict change. One fundamental uncertainty in TBMs relates to model parameters, configuration variables internal to the model whose value can be estimated from data. We incorporate a version of the Terrestrial Ecosystem Model (TEM) developed for arctic ecosystems into the Predictive Ecosystem Analyzer (PEcAn) framework. PEcAn treats model parameters as probability distributions, estimates parameters based on a synthesis of available field data, and then quantifies both model sensitivity and uncertainty to a given parameter or suite of parameters. We examined how variation in 21 parameters in the equation for gross primary production influenced model sensitivity and uncertainty in terms of two carbon fluxes (net primary productivity and heterotrophic respiration) and two carbon (C) pools (vegetation C and soil C). We set up different parameterizations of TEM across a range of tundra types (tussock tundra, heath tundra, wet sedge tundra, and shrub tundra) in northern Alaska, along a latitudinal transect extending from the coastal plain near Utqiaġvik to the southern foothills of the Brooks Range, to the Seward Peninsula. TEM was most sensitive to parameters related to the temperature regulation of photosynthesis. Model uncertainty was mostly due to parameters related to leaf area, temperature regulation of photosynthesis, and the stomatal responses to ambient light conditions. Our analysis also showed that sensitivity and uncertainty to a given parameter varied spatially. At some sites, model sensitivity and uncertainty tended to be connected to a wider range of parameters, underlining the importance of assessing tundra community processes across environmental gradients or geographic locations. Generally, across sites, the flux of net primary productivity (NPP) and pool of vegetation C had about equal uncertainty, while heterotrophic respiration had higher uncertainty than the pool of soil C. Our study illustrates the complexity inherent in evaluating parameter uncertainty across highly heterogeneous arctic tundra plant communities. It also provides a framework for iteratively testing how newly collected field data related to key parameters may result in more effective forecasting of Arctic change.more » « less
-
Arctic vegetation communities are rapidly changing with climate warming, which impacts wildlife, carbon cycling and climate feedbacks. Accurately monitoring vegetation change is thus crucial, but scale mismatches between field and satellite-based monitoring cause challenges. Remote sensing from unmanned aerial vehicles (UAVs) has emerged as a bridge between field data and satellite-based mapping. We assess the viability of using high resolution UAV imagery and UAV-derived Structure from Motion (SfM) to predict cover, height and aboveground biomass (henceforth biomass) of Arctic plant functional types (PFTs) across a range of vegetation community types. We classified imagery by PFT, estimated cover and height, and modeled biomass from UAV-derived volume estimates. Predicted values were compared to field estimates to assess results. Cover was estimated with root-mean-square error (RMSE) 6.29-14.2% and height was estimated with RMSE 3.29-10.5 cm, depending on the PFT. Total aboveground biomass was predicted with RMSE 220.5 g m-2, and per-PFT RMSE ranged from 17.14-164.3 g m-2. Deciduous and evergreen shrub biomass was predicted most accurately, followed by lichen, graminoid, and forb biomass. Our results demonstrate the effectiveness of using UAVs to map PFT biomass, which provides a link towards improved mapping of PFTs across large areas using earth observation satellite imagery.more » « less