skip to main content


Title: Long‐term ecological legacies in western Amazonia
Abstract

Modifications of Amazonian forests by pre‐Columbian peoples are thought to have left ecological legacies that have persisted to the modern day. Most Amazonian palaeoecological records do not, however, provide the required temporal resolution to document the nuanced changes of pre‐Columbian disturbance or post‐disturbance succession and recovery, making it difficult to detect any direct, or indirect, ecological legacies on tree species.

Here, we investigate the fossil pollen, phytolith and charcoal history of Lake Kumpaka, Ecuador, during the last 2,415 years inc. 3–50 year time intervals to assess ecological legacies resulting from pre‐Columbian forest modification, disturbance, cultivation and fire usage.

Two cycles of pre‐Columbian cultivation (one including slash‐and‐burn cultivation, the other including slash‐and‐mulch cultivation) were documented in the record around 2150–1430 cal. year BP and 1250–680 cal. year BP, with following post‐disturbance succession dynamics. Modern disturbance was documented afterc. 10 cal. year BP. The modern disturbance produced a plant composition unlike those of the two past disturbances, as fire frequencies reached their peak in the 2,415‐year record. The disturbance periods varied in intensity and duration, while the overturn of taxa following a disturbance lasted for hundreds of years. The recovery periods following pre‐Columbian disturbance shared some similar patterns of early succession, but the longer‐term recovery patterns differed.

Synthesis. The trajectories of change after a cessation of cultivation can be anticipated to differ depending on the intensity, scale, duration and manner of the past disturbance. In the Kumpakarecord, no evidence of persistent enrichment or depletion of intentionally altered taxa (i.e. direct legacy effects) was found but indirect legacy effects, however, were documented and have persisted to the modern day. These findings highlight the strengths of using empirical data to reconstruct past change rather than relying solely on modern plant populations to infer past human management and ecological legacies, and challenge some of the current hypotheses involving the persistence of pre‐Columbian legacies on modern plant populations.

 
more » « less
NSF-PAR ID:
10374518
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
109
Issue:
1
ISSN:
0022-0477
Page Range / eLocation ID:
p. 432-446
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    People have modified landscapes throughout the Holocene (the lastc. 11,700 years) by modifying soils, burning forests, cultivating and domesticating plants, and directly and indirectly enriched and depleted plant abundances. These activities also took place in Amazonia, which is the largest contiguous piece of rainforest in the world, and for many decades was considered to have very little human impact until the modern era.

    The compositional shift caused by past human disturbances can alter forest traits, creating ecological legacies that may persist through time. As the lifespan of most Amazonian tree species is more than 200 years, forests that were modified over the last centuries to millennia are likely still in a mid‐successional state.

    Ecological legacies resulting from past human activity may also affect modern forest resilience to ongoing anthropogenic and climatic changes.

    Current estimates of resilience assume that forests are in equilibrium, and long‐term successional trajectories are not considered.

    We suggest that disturbance histories, generated through palaeoecological and archaeological surveys, should be paired with field‐based and remotely sensed estimates of forest resilience to recent drought events, to determine whether past human activities affect modern forest resilience. We have outlined how this can be accomplished in future research.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  2. Abstract

    Wildfires strongly influence forest ecosystem processes, including carbon and nutrient cycling, and vegetation dynamics. As fire activity increases under changing climate conditions, the ecological and biogeochemical resilience of many forest ecosystems remains unknown.

    To investigate the resilience of forest ecosystems to changing climate and wildfire activity over decades to millennia, we developed a 4800‐year high‐resolution lake‐sediment record from Silver Lake, Montana, USA (47.360° N, 115.566° W). Charcoal particles, pollen grains, element concentrations and stable isotopes of C and N serve as proxies of past changes in fire, vegetation and ecosystem processes such as nitrogen cycling and soil erosion, within a small subalpine forest watershed. A published lake‐level history from Silver Lake provides a local record of palaeohydrology.

    A trend towards increased effective moisture over the late Holocene coincided with a distinct shift in the pollen assemblage c. 1900 yr BP, resulting from increased subalpine conifer abundance. Fire activity, inferred from peaks in macroscopic charcoal, decreased significantly after 1900 yr BP, from one fire event every 126 yr (83–184 yr, 95% CI) from 4800 to 1900 yr BP, to one event every 223 yr (175–280 yr) from 1900 yr BP to present.

    Across the record, individual fire events were followed by two distinct decadal‐scale biogeochemical responses, reflecting differences in ecosystem impacts of fires on watershed processes. These distinct biogeochemical responses were interpreted as reflecting fire severity, highlighting (i) erosion, likely from large or high‐severity fires, and (ii) nutrient transfers and enhanced within‐lake productivity, likely from lower severity or patchier fires. Biogeochemical and vegetation proxies returned to pre‐fire values within decades regardless of the nature of fire effects.

    Synthesis. Palaeorecords of fire and ecosystem responses provide a novel view revealing past variability in fire effects, analogous to spatial variability in fire severity observed within contemporary wildfires. Overall, the palaeorecord highlights ecosystem resilience to fire across long‐term variability in climate and fire activity. Higher fire frequencies in past millennia relative to the 20th and 21st century suggest that northern Rocky Mountain subalpine ecosystems could remain resilient to future increases in fire activity, provided continued ecosystem recovery within decades.

     
    more » « less
  3. Abstract

    The recovery capacity and the successional pathways of tropical forests after anthropogenic disturbance vary considerably and may depend on prior land‐use type and intensity. It is still unclear if forests subjected to high intensity impact, such as periodically burned pastures, are capable of restoring their original functional properties.

    This study analysed the functional trait dynamics of the dominant species in successional trajectories following two land uses, pasture or clear‐cut, north of Manaus. Fourteen years of demographic data from the Biological Dynamics of Forest Fragments Project were used to determine the dominant species of the two successional trajectories, for which leaf area, leaf dry mass content, specific leaf area and wood density were collected, whereas seed mass was obtained from literature. Community weighted mean of each trait was weighted by basal area determined annually along succession. Prinicpal components analysis was used to analyse the extension and direction of the functional trajectories of plots.

    Forests regenerating from pastures increased in wood density through successional time, but other traits did not change significantly. Succession after clear‐cut exhibited increasing leaf dry mass content and seed mass, and decreasing leaf area over time, but no change in wood density. Functional trajectories of plots after clear‐cut were more extensive and directional than those of pasture‐derived plots.

    Synthesis and applications. We demonstrate how central Amazonian secondary forests subjected to different land uses show differences in functional trait trajectories, in ways parallel to previously shown changes in biomass, floristic diversity and forest structure. These results indicate that natural recovery of forest functional traits is affected by prior land‐use history, with implications for management and restoration. Thus, natural recovery of forests on abandoned pastures is much slower than clear‐cuts, even though seed sources from mature forests are very close to these areas, and the former may need intervention to counteract the diverted succession.

     
    more » « less
  4. Information and material biological legacies that persist after catastrophic forest disturbance collectively constitute the ecological memory of the system and may strongly influence future stand development. Catastrophic disturbances often result in an influx of coarse woody debris (CWD), and this material legacy may provide beneficial microsites that affect successional and structural developmental pathways. We examined how microenvironmental characteristics influence the regeneration of woody plants in a subtropical woodland that experienced a large influx of CWD from a catastrophic wind disturbance. Specifically, we asked (1) what microenvironmental factors best explain woody plant density, richness, and height in the regeneration layer and (2) does woody plant density, richness, and height benefit from the large influx of CWD to a degree that competition dynamics and succession may be modified? Data were collected in a Pinus palustris woodland that had experienced an EF3 tornado and was subjected to a four-year prescribed fire rotation. We documented live woody plants <5 cm diameter at breast height, soil, and site characteristics and tested for differences in seedling and sapling density, species richness, and height in relation to CWD proximity. We used a random forest machine learning algorithm to examine the influence of microenvironmental conditions on the characteristics of woody plants in the regeneration layer. Woody plant density and species richness were not significantly different by proximity to CWD, but plants near CWD were slightly taller than plants away from CWD. The best predictors of woody plant density, richness, and height were abiotic site characteristics including slope gradient and azimuth, organic matter depth and weight, and soil water content. Results indicated that the regeneration of woody plants in this P. palustris woodland was not strongly influenced by the influx of CWD, but by other biological legacies such as existing root networks and soil characteristics. Our study highlights the need to consider ecological memory in forest management decision-making after catastrophic disturbance. Information and material legacies shape recovery patterns, but, depending on the system, some legacies will be more influential on successional and developmental pathways than others. 
    more » « less
  5. Abstract

    Human impacts have led to dramatic biodiversity change which can be highly scale‐dependent across space and time. A primary means to manage these changes is via passive (here, the removal of disturbance) or active (management interventions) ecological restoration. The recovery of biodiversity, following the removal of disturbance, is often incomplete relative to some kind of reference target. The magnitude of recovery of ecological systems following disturbance depends on the landscape matrix and many contingent factors. Inferences about recovery after disturbance and biodiversity change depend on the temporal and spatial scales at which biodiversity is measured.

    We measured the recovery of biodiversity and species composition over 33 years in 17 temperate grasslands abandoned after agriculture at different points in time, collectively forming a chronosequence since abandonment from 1 to 80 years. We compare these abandoned sites with known agricultural land‐use histories to never‐disturbed sites as relative benchmarks. We specifically measured aspects of diversity at the local plot‐scale (α‐scale, 0.5 m2) and site‐scale (γ‐scale, 10 m2), as well as the within‐site heterogeneity (β‐diversity) and among‐site variation in species composition (turnover and nestedness).

    At our α‐scale, sites recovering after agricultural abandonment only had 70% of the plant species richness (and ~30% of the evenness), compared to never‐ploughed sites. Within‐site β‐diversity recovered following agricultural abandonment to around 90% after 80 years. This effect, however, was not enough to lead to recovery at our γ‐scale. Richness in recovering sites was ~65% of that in remnant never‐ploughed sites. The presence of species characteristic of the never‐disturbed sites increased in the recovering sites through time. Forb and legume cover declines in years since abandonment, relative to graminoid cover across sites.

    Synthesis.We found that, during the 80 years after agricultural abandonment, old fields did not recover to the level of biodiversity in remnant never‐ploughed sites at any scale. β‐diversity recovered more than α‐scale or γ‐scale. Plant species composition recovered, but not completely, over time, and some species groups increased their cover more than others. Patterns of ecological recovery in degraded ecosystems across space and long time‐scales can inform targeted active restoration interventions and perhaps, lead to better outcomes.

     
    more » « less