skip to main content


Title: A Census of Magnetospheric Electrons From Several eV to 30 keV
Abstract

A survey of electrons with energies between ∼1 eV and 30 keV was conducted using measurements from the THEMIS spacecraft over radial distances between 3 and 12 Earth radii. Two distinct populations are observed, one with a peak energy near 10 eV and one at approximately 1 keV. These populations are present 88% of the time in the magnetosphere. The warm population (∼10 eV) is generally more dense (∼1 cm−3) and extends across the dayside. These warm electron characteristics are similar to the ion warm plasma cloak. The hot distribution (∼1 keV) peaks in number density (∼0.2 cm−3) near midnight and into the morning sector. Since the populations are transported through different evolutionary paths, there are spatial regions within the magnetosphere where the density ratio of the populations (warm to hot,nw/nh) is much larger or smaller than unity. AtLshells greater than ∼6, near midnight and into the dawn sector, the density of the hot population is close to a factor of 10 larger than the warm populations. In other regions, the warm electron population is typically slightly more dense (∼2×) than the hot population.

 
more » « less
NSF-PAR ID:
10374534
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
5
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Utilizing observations from the Electron Losses and Fields Investigation satellites, we present a statistical study of ∼2,000 events in 2019–2020 characterizing the occurrence in magnetic local time (MLT) and latitude of ≥50 keV electron isotropy boundaries (IBs) and associated electron precipitation. The isotropy boundary of an electron of a given energy is the magnetic latitude poleward of which persistent isotropized pitch angle distributions (Jprec/Jperp∼ 1) are first observed to occur, interpreted as resulting from magnetic field‐line curvature scattering in the equatorial magnetosphere. We find that energetic electron IBs can be well‐recognized on the nightside from dusk until dawn, under all geomagnetic activity conditions, with a peak occurrence rate of almost 90% near ∼22 hr in MLT, remaining above 80% from 21 to 01 MLT. The observed IBs span International Geophysical Reference Field (IGRF) magnetic latitudes of 60°–74° with a maximum occurrence between 66° and 71° (Lof 6–8), trending toward lower latitudes and premidnight local times with activity. The precipitating energy flux of ≥50 keV electrons averaged over the IB‐associated latitudes varies over four orders of magnitude, up to 1 erg/cm2‐s, and often includes wide‐energy electron spectra exceeding 1 MeV. The IB‐associated energies and precipitating fluxes also exhibit peak values near midnight for low activity, shifting toward premidnight for elevated activity. The average total precipitating power deposited over the high‐latitude nightside atmosphere (55°–80°; IGRFL ≥ 3) attributed to IBs is 10%–20%, or 10 MW, but at times can approach 100% of the total ≥50 keV electron energy deposition over the entire subauroral and auroral zone region, exceeding 1 GW.

     
    more » « less
  2. Water vapor (H2O) is one of the brightest molecular emitters after carbon monoxide (CO) in galaxies with high infrared (IR) luminosity, allowing us to investigate the warm and dense phase of the interstellar medium (ISM) where star formation occurs. However, due to the complexity of its radiative spectrum, H2O is not frequently exploited as an ISM tracer in distant galaxies. Therefore, H2O studies of the warm and dense gas at high-zremain largely unexplored. In this work, we present observations conducted with the Northern Extended Millimeter Array (NOEMA) toward threez > 6 IR-bright quasarsJ2310+1855,J1148+5251, andJ0439+1634targeted in their multiple para- and ortho-H2O transitions (312 − 303, 111 − 000, 220 − 211, and 422 − 413), as well as their far-IR (FIR) dust continuum. By combining our data with previous measurements from the literature, we estimated the dust masses and temperatures, continuum optical depths, IR luminosities, and star formation rates (SFR) from the FIR continuum. We modeled the H2O lines using the MOLPOP-CEP radiative transfer code, finding that water vapor lines in our quasar host galaxies are primarily excited in the warm, dense (with a gas kinetic temperature and density ofTkin = 50 K,nH2 ∼ 104.5 − 105 cm−3) molecular medium with a water vapor column density ofNH2O ∼ 2 × 1017 − 3 × 1018 cm−3. High-JH2O lines are mainly radiatively pumped by the intense optically-thin far-IR radiation field associated with a warm dust component at temperatures ofTdust ∼ 80 − 190 K that account for < 5 − 10% of the total dust mass. In the case of J2310+1855, our analysis points to a relatively high value of the continuum optical depth at 100 μm (τ100 ∼ 1). Our results are in agreement with expectations based on the H2O spectral line energy distribution of local and high-zultra-luminous IR galaxies and active galactic nuclei (AGN). The analysis of the Boltzmann diagrams highlights the interplay between collisions and IR pumping in populating the high H2O energy levels and it allows us to directly compare the excitation conditions in the targeted quasar host galaxies. In addition, the observations enable us to sample the high-luminosity part of the H2O–total-IR (TIR) luminosity relations (LH2O − LTIR). Overall, our results point to supralinear trends that suggest H2O–TIR relations are likely driven by IR pumping, rather than the mere co-spatiality between the FIR continuum- and line-emitting regions. The observedLH2O/LTIRratios in ourz > 6 quasars do not show any strong deviations with respect to those measured in star-forming galaxies and AGN at lower redshifts. This supports the notion that H2O can be likely used to trace the star formation activity buried deep within the dense molecular clouds.

     
    more » « less
  3. Abstract

    This work conducts a statistical study of the subauroral polarization stream (SAPS) feature in the North American sector using Millstone Hill incoherent scatter radar measurements from 1979 to 2019, which provides a comprehensive SAPS climatology using a significantly larger database of radar observations than was used in seminal earlier works. Key features of SAPS and associated electron density (Ne), ion temperature (Ti), and electron temperature (Te) are investigated using a superposed epoch analysis method. The characteristics of these parameters are investigated with respect to magnetic local time, season, geomagnetic activity, solar activity, and interplanetary magnetic field (IMF) orientation, respectively. The main results are as follows: (1) Conditions for SAPS are more favorable for dusk than near midnight, for winter compared to summer, for active geomagnetic periods compared to quiet time, for solar minimum compared to solar maximum, and for IMF conditions with negativeByand negativeBz. (2) SAPS is usually associated with a midlatitude trough of 15–20% depletion in the background density. The SAPS‐related trough is more pronounced in the postmidnight sector and near the equinoxes. (3) Subauroral ion and electron temperatures exhibit a 3–8% (50–120 K) enhancement in SAPS regions, which tend to have higher percentage enhancement during geomagnetically active periods and at midnight. Ion temperature enhancements are more favored during low solar activity periods, while the electron temperature enhancement remains almost constant as a function of the solar cycle. (4) The electron thermal content,Te × Ne, in the SAPS associated region is strongly dependent on 1/Ne, withTeexhibiting a negative correlation with respect toNe.

     
    more » « less
  4. Abstract

    Room temperature semiconductor detector (RTSD) materials for γ‐ray and X‐ray radiation are in great demand for the nonproliferation of nuclear materials as well as for biomedical imaging applications. Halide perovskites have attracted great attention as emerging and promising RTSD materials. In this contribution, the material synthesis, purification, crystal growth, crystal structure, photoluminescence properties, ionizing radiation detection performance, and electronic structure of the inorganic halide perovskitoid compound TlPbI3are reported on. This compound crystallizes in the ABX3non‐perovskite crystal structure with a high density ofd = 6.488 g·cm–3, has a wide bandgap of 2.25 eV, and melts congruently at a low temperature of 360 °C without phase transitions, which allows for facile growth of high quality crystals with few thermally‐activated defects. High‐quality TlPbI3single crystals of centimeter‐size are grown using the vertical Bridgman method using purified raw materials. A high electrical resistivity of ≈1012 Ω·cm is readily obtainable, and detectors made of TlPbI3single crystals are highly photoresponsive to Ag KαX‐rays (22.4 keV), and detects 122 keV γ‐rays from57Co radiation source. The electron mobility‐lifetime productµeτewas estimated at 1.8 × 10–5cm2·V–1. A high relative static dielectric constant of 35.0 indicates strong capability in screening carrier scattering and charged defects in TlPbI3.

     
    more » « less
  5. Abstract

    ipso‐Arylative ring‐opening polymerization of 2‐bromo‐8‐aryl‐8H‐indeno[2,1‐b]thiophen‐8‐ol monomers proceeds to Mnup to 9 kg mol−1with conversion of the monomer diarylcarbinol groups to pendent conjugated aroylphenyl side chains (2‐benzoylphenyl or 2‐(4‐hexylbenzoyl)phenyl), which influence the optical and electronic properties of the resulting polythiophenes. Poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to have lower frontier orbital energy levels (HOMO/LUMO=−5.9/−4.0 eV) than poly(3‐hexylthiophene) owing to the electron‐withdrawing ability of the aryl ketone side chains. The electron mobility (ca. 2×10−3 cm2 V−1 s−1) for poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to be significantly higher than the hole mobility (ca. 8×10−6 cm2 V−1 s−1), which suggests such polymers are candidates for n‐type organic semiconductors. Density functional theory calculations suggest that backbone distortion resulting from side‐chain steric interactions could be a key factor influencing charge mobilities.

     
    more » « less