skip to main content


Title: Dual‐Lobe Reconnection and Horse‐Collar Auroras
Abstract

We propose a mechanism for the formation of the horse‐collar auroral configuration during periods of strongly northward interplanetary magnetic field (IMF), invoking the action of dual‐lobe reconnection (DLR). Auroral observations are provided by the Imager for Magnetopause‐to‐Aurora Global Exploration (IMAGE) satellite and spacecraft of the Defense Meteorological Satellite Program (DMSP). We also use ionospheric flow measurements from DMSP and polar maps of field‐aligned currents (FACs) derived from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). Sunward convection is observed within the dark polar cap, with antisunward flows within the horse‐collar auroral region, together with the NBZ FAC distribution expected to be associated with DLR. We suggest that newly closed flux is transported antisunward and to dawn and dusk within the reverse lobe cell convection pattern associated with DLR, causing the polar cap to acquire a teardrop shape and weak auroras to form at high latitudes. Horse‐collar auroras are a common feature of the quiet magnetosphere, and this model provides a first understanding of their formation, resolving several outstanding questions regarding the nature of DLR and the magnetospheric structure and dynamics during northward IMF. The model can also provide insights into the trapping of solar wind plasma by the magnetosphere and the formation of a low‐latitude boundary layer and cold, dense plasma sheet. We speculate that prolonged DLR could lead to a fully closed magnetosphere, with the formation of horse‐collar auroras being an intermediate step.

 
more » « less
NSF-PAR ID:
10374554
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
10
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The space hurricane is a newly discovered large-scale three-dimensional magnetic vortex structure that spans the polar ionosphere and magnetosphere. At the height of the ionosphere, it has a strong circular horizontal plasma flow with a nearly zero-flow center and a coincident cyclone-shaped aurora caused by strong electron precipitation associated with intense upward magnetic field-aligned currents. By analyzing the long-term optical observation onboard the Defense Meteorological Satellite Program (DMSP) F16 satellite from 2005 to 2016, we found that space hurricanes in the Northern Hemisphere occur in summer and have a maximum occurrence rate in the afternoon sector around solar maximum. In particular, space hurricanes are more likely to occur in the dayside polar cap at magnetic latitudes greater than 80°, and their MLT (magnetic local time) dependence shows a positive relationship with the IMF (interplanetary magnetic field) clock angle. We also found that space hurricanes occur mainly under dominant positive IMF By and Bz and negative Bx conditions. It is suggested that the stable high-latitude lobe reconnection, which occurs under the conditions of a large Earth’s dipole tilt angle and high ionosphere conductivity in summer, should be the formation mechanism of space hurricanes. The result will give a better understanding of the solar wind–magnetosphere–ionosphere coupling process under northward IMF conditions. 
    more » « less
  2. Abstract

    In this paper, we present a case study of the radial interplanetary magnetic field (IMFBx)‐induced asymmetric solar wind‐magnetosphere‐ionosphere (SW‐M‐I) coupling between the northern and southern polar caps using ground‐based and satellite‐based data. Under prolonged conditions of strong earthward IMF on 5 March 2015, we find significant discrepancies between polar cap north (PCN) and polar cap south (PCS) magnetic indices with a negative bay‐like change in the PCN and a positive bay‐like change in the PCS. The difference between these indices (PCN‐PCS) reaches a minimum of −1.63 mV/m, which is approximately three times higher in absolute value than the values for most of the time on this day (within ±0.5 mV/m). The high‐latitude plasma convection also shows an asymmetric feature such that there exists an additional convection cell near the noon sector in the northern polar cap, but not in the southern polar cap. Meanwhile, negative bays in the north‐south component of ground magnetic field perturbations (less than 50 nT) observed in the nightside auroral region of the Northern Hemisphere are accompanied with the brightening and widening of the nightside auroral oval in the Southern Hemisphere, implying a weak, but clear energy transfer to the nightside ionosphere of both hemispheres. After the hemispheric asymmetries in the polar caps disappear, a substorm onset takes place. All these observations indicate that IMFBx‐induced single lobe reconnection that occurred in the Northern Hemisphere plays an important role in hemispheric asymmetry in the energy transfer from the solar wind to the polar cap through the magnetosphere.

     
    more » « less
  3. Abstract

    Lobe reconnection is usually thought to play an important role in geospace dynamics only when the Interplanetary Magnetic Field (IMF) is mainly northward. This is because the most common and unambiguous signature of lobe reconnection is the strong sunward convection in the polar cap ionosphere observed during these conditions. During more typical conditions, when the IMF is mainly oriented in a dawn‐dusk direction, plasma flows initiated by dayside and lobe reconnection both map to high‐latitude ionospheric locations in close proximity to each other on the dayside. This makes the distinction of the source of the observed dayside polar cap convection ambiguous, as the flow magnitude and direction are similar from the two topologically different source regions. We here overcome this challenge by normalizing the ionospheric convection observed by the Super Dual Aurora Radar Network (SuperDARN) to the polar cap boundary, inferred from simultaneous observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). This new method enable us to separate and quantify the relative contribution of both lobe reconnection and dayside/nightside (Dungey cycle) reconnection during periods of dominating IMFBy. Our main findings are twofold. First, the lobe reconnection rate can typically account for 20% of the Dungey cycle flux transport during local summer when IMFByis dominating and IMFBz ≥ 0. Second, the dayside convection relative to the open/closed boundary is vastly different in local summer versus local winter, as defined by the dipole tilt angle.

     
    more » « less
  4. Abstract. It is well known that the polar cap, delineated by the open–closed field line boundary (OCB),responds to changes in the interplanetary magnetic field (IMF).In general, the boundary moves equatorward when the IMF turns southward and contractspoleward when the IMF turns northward. However,observations of the OCB are spotty and limited in local time,making more detailed studies of its IMF dependence difficult.Here, we simulate five solar storm periods with the coupled model consisting of the OpenGeospace General Circulation Model (OpenGGCM) coupled with the Coupled Thermosphere IonosphereModel (CTIM) and the Rice Convection Model (RCM),i.e., the OpenGGCM-CTIM-RCM, to estimate the location and dynamics of the OCB.For these events, polar cap boundary location observations are also obtained from Defense MeteorologicalSatellite Program (DMSP) precipitation spectrograms and compared with the model output.There is a large scatter in the DMSP observations and in the model output.Although the model does not predict the OCB with high fidelity for every observation,it does reproduce the general trend as a function of IMF clock angle.On average, the model overestimates the latitude of the open–closed field line boundaryby 1.61∘. Additional analysis of the simulated polar cap boundary dynamics acrossall local times shows that the MLT of the largest polar cap expansion closely correlateswith the IMF clock angle, that the strongest correlation occurs when the IMF is southward, thatduring strong southward IMF the polar cap shifts sunward, and that the polar cap rapidlycontracts at all local times when the IMF turns northward. 
    more » « less
  5. Abstract

    We report the observation of solar wind‐magnetosphere‐ionosphere interactions using a series of flux transfer events (FTEs) observed by Magnetospheric MultiScale (MMS) mission located near the dayside magnetopause on 18 December 2017. The FTEs were observed to propagate duskward and either southward or slightly northward, as predicted under duskward and southward interplanetary magnetic field (IMF). The Cooling model also predicted a significant dawnward propagation of northward‐moving FTEs. Near the MMS footprint, a series of poleward‐moving auroral forms (PMAFs) occurred almost simultaneously with those FTEs. They propagated poleward and westward, consistent with the modeled FTE propagation. The intervals between FTEs, relatively consistent with those between PMAFs, strongly suggest a one‐to‐one correspondence between the dayside transients and ionospheric responses. The FTEs embedded in continuous reconnection observed by MMS and corresponding PMAFs individually occurred during persistent auroral activity recorded by an all‐sky imager strongly indicate that those FTEs/PMAFs resulted from the temporal modulation of the reconnection rate during continuous reconnection. With the decay of the PMAFs associated with the FTEs, patch‐like plasma density enhancements were detected to form and propagate poleward and then dawnward. Propagation to the dawn was also suggested by the Super Dual Auroral Radar Network (SuperDARN) convection and Global Positioning System (GPS) total electron content data. We relate the temporal variation of the driving solar‐wind and magnetospheric mechanism to that of the high‐latitude and polar ionospheric responses and estimate the response time.

     
    more » « less