skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: Vertical Transport, Entrainment, and Scavenging Processes Affecting Trace Gases in a Modeled and Observed SEAC 4 RS Case Study

The convectively driven transport of soluble trace gases from the lower to the upper troposphere can occur on timescales of less than an hour, and recent studies suggest that microphysical scavenging is the dominant removal process of tropospheric ozone precursors. We examine the processes responsible for vertical transport, entrainment, and scavenging of soluble ozone precursors (formaldehyde and peroxides) for midlatitude convective storms sampled on 2 September 2013 during the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) study. Cloud‐resolving simulations using the Weather Research and Forecasting with Chemistry model combined with aircraft measurements were performed to understand the effect of entrainment, scavenging efficiency (SE), and ice physics processes on these trace gases. Analysis of the observations revealed that the SEs of formaldehyde (43–53%) and hydrogen peroxide (~80–90%) were consistent between SEAC4RS storms and the severe convection observed during the Deep Convective Clouds and Chemistry Experiment (DC3) campaign. However, methyl hydrogen peroxide SE was generally smaller in the SEAC4RS storms (4%–27%) compared to DC3 convection. Predicted ice retention factors exhibit different values for some species compared to DC3, and we attribute these differences to variations in net precipitation production. The analyses show that much larger production of precipitation between condensation and freezing levels for DC3 severe convection compared to smaller SEAC4RS storms is largely responsible for the lower amount of soluble gases transported to colder temperatures, reducing the amount of soluble gases which eventually interact with cloud ice particles.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;   « less
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid phase and mixed‐phase scavenging, entrainment of free tropospheric air and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high‐resolution (dx≤3 km) WRF‐Chem simulations of a severe storm, an air mass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CH2O) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm. By analyzing WRF‐Chem trajectories, the effects of scavenging, entrainment, and aqueous chemistry on outflow mixing ratios of CH2O, methyl hydroperoxide (CH3OOH), and hydrogen peroxide (H2O2) are quantified. Liquid phase microphysical scavenging was the dominant process reducing CH2O and H2O2outflow mixing ratios in all three storms. Aqueous chemistry did not significantly affect outflow mixing ratios of all three species. In the severe storm and MCS, the higher than expected reductions in CH3OOH mixing ratios in the storm cores were primarily due to entrainment of low‐background CH3OOH. In the air mass storm, lower CH3OOH and H2O2scavenging efficiencies (SEs) than in the MCS were partly due to entrainment of higher background CH3OOH and H2O2. Overestimated rain and hail production in WRF‐Chem reduces the confidence in ice retention fraction values determined for the peroxides and CH2O.

    more » « less
  2. Abstract

    Deep convection can transport surface moisture and pollution from the planetary boundary layer to the upper troposphere (UT) within a few minutes. The convective transport of precursors of both ozone and aerosols from the planetary boundary layer affects the concentrations of these constituents in the UT and can influence the Earth's radiation budget and climate. Some precursors of both ozone and aerosols are soluble and reactive in the aqueous phase. This study uses the Weather Research and Forecasting model coupled with Chemistry (WRF‐Chem) to simulate the wet scavenging of precursors of both ozone and aerosols including CH2O, CH3OOH, H2O2, and SO2in a supercell system observed on 29 May 2012, during the 2012 Deep Convective Clouds and Chemistry (DC3) field campaign at cloud‐parameterized resolution. The default WRF‐Chem simulations underestimate the mixing ratios of soluble ozone precursors in the UT because the dissolved soluble trace gases are not released when the droplets freeze. In order to improve the model simulation of cloud‐parameterized wet scavenging, we added ice retention factors for various species to the cloud‐parameterized wet scavenging module and adjusted the conversion rate of cloud water to rainwater at temperatures below freezing in the cloud parameterization as well as in the subgrid‐scale wet‐scavenging calculation. The introduction of these model modifications greatly improved the model simulation of less soluble species.

    more » « less
  3. Abstract

    Interactions between convection and the Saharan Air Layer in the tropical Atlantic Ocean are quantified using a novel compositing technique that leverages geostationary cloud observations to add temporal context to the polar orbiting CloudSat and the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellites allowing aerosol optical depth (AOD) changes to be tracked throughout a typical convective storm life cycle. Four years of CALIPSO observations suggests that approximately 20% of the dust mass in every 10° longitude band between 10°W and 80°W is deposited into the ocean. Combining a new convective identification algorithm based on hourly geostationary cloud products withAODdustprofiles along the CALIPSO track reveals that wet scavenging by convection is responsible for a significant fraction of this deposition across the Atlantic. Composites of 4 years of convective systems reveal that, on average, convection accounts for 15% ± 7% of the dust deposition in each longitude band relative to preconvective amounts, implying that dry deposition and scavenging by nonconvective events are responsible for the remaining 85% of dust removal. In addition, dust layers are detrained at upper levels of the atmosphere between 8 and 12 km by convective storms across the Atlantic. The dust budget analysis presented here indicates that convection lofts 1.5% ± 0.6% of dust aerosol mass to altitudes greater than 6 km. This may have significant implications for cloud formation downstream of convection since lofted dust particles can act as effective ice nucleating particles, altering cloud microphysical and radiative properties, latent heating, and precipitation rates.

    more » « less
  4. Global cloud coverage has a substantial impact on local and global radiative budgets. It is necessary to correctly represent clouds in numerical weather models to improve both weather and climate predictions. This study evaluates in situ airborne observations of cloud microphysical properties and compares results with the Weather Research and Forecasting model (WRF) and Community Atmosphere Model version 5 (CAM5). Dynamical conditions producing supersaturated conditions with respect to ice at high altitudes in regions diagnosed by convective activity are explored using observations taken from the Deep Convective Clouds and Chemistry (DC3) campaign, and results are compared with simulated data from WRF. The WRF analysis tests multiple cloud microphysics schemes and finds the model requires much stronger updrafts to initiate large magnitudes of ice supersaturation (ISS) relative to observations. This is primarily due to the microphysics schemes over-predicting ice particle number concentrations (Ncice), which rapidly deplete the available water vapor. The frequency of different cloud phases and the distribution of relative humidity (RH) over the Southern Ocean is explored using in situ airborne observations taken from the O2/N2 Ratio and CO2 Airborne Southern Ocean Study (ORCAS) and compared with simulated data from CAM5. The CAM5 simulations produce comparable distributions of RH in clear-sky conditions at warmer temperatures (>-20°C). However, simulations fail to capture high frequencies of clear-sky ISS at colder temperatures (< 40°C). In addition, CAM5 underestimates the frequency of subsaturated conditions within ice phase clouds from -40°‒0°C. 
    more » « less
  5. Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (γ) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx  ≡  NO + NO2) over the southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58 % of isoprene SOA) from the low-NOx pathway and glyoxal (28 %) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume). The US Environmental Protection Agency (EPA) projects 2013–2025 decreases in anthropogenic emissions of 34 % for NOx (leading to a 7 % increase in isoprene SOA) and 48 % for SO2 (35 % decrease in isoprene SOA). Reducing SO2 emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor of 2 co-benefit for PM2.5 from SO2 emission controls. 
    more » « less