skip to main content

Title: Insights From the 238 U‐ 234 Th Method Into the Coupling of Biological Export and the Cycling of Cadmium, Cobalt, and Manganese in the Southeast Pacific Ocean

Better constraints on the magnitude of particulate export and the residence times of trace elements are required to understand marine food web dynamics, track the transport of anthropogenic trace metals in the ocean, and improve global climate models. While prior studies have been successful in constructing basin‐scale budgets of elements like carbon in the upper ocean, the cycling of particulate trace metals is poorly understood. The238U‐234Th method is used here with data from the GP‐16 GEOTRACES transect to investigate the upper ocean processes controlling the particulate export of cadmium, cobalt, and manganese in the southeastern Pacific. Patterns in the flux data indicated that particulate cadmium and cobalt behave similarly to particulate phosphorus and organic carbon, with the highest export in the productive coastal region and decreasing flux with depth due to remineralization. The export of manganese was influenced by redox conditions at the low oxygen coastal stations and by precipitation and/or scavenging elsewhere. Residence times with respect to export (total inventory divided by particulate flux) for phosphorus, cadmium, cobalt, and manganese in the upper 100 and 200 m were determined to be on the order of months to years. These GEOTRACES‐based synthesis efforts, combining a host of concentration and tracer data with unprecedented resolution, will help to close the oceanic budgets of trace metals.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Medium: X Size: p. 15-36
p. 15-36
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although iron availability has been shown to limit ocean productivity and influence marine carbon cycling, the rates of processes driving iron's removal and retention in the upper ocean are poorly constrained. Using234Th‐ and sediment‐trap data, most of which were collected through international GEOTRACES efforts, we perform an unprecedented observation‐based assessment of iron export from and residence time in the upper ocean. The majority of these new residence time estimates for total iron in the surface ocean (0–250 m) fall between 10 and 100 days. The upper ocean residence time of dissolved iron, on the other hand, varies and cycles on sub‐annual to annual timescales. Collectively, these residence times are shorter than previously thought, and the rates and timescales presented here will contribute to ongoing efforts to integrate iron into global biogeochemical models predicting climate and carbon dioxide sequestration in the ocean in the 21st century and beyond.

    more » « less
  2. Abstract

    Deposition of aerosols to the surface ocean is an important factor affecting primary production in the surface ocean. However, the sources and fluxes of aerosols and associated trace elements remain poorly defined. Aerosol210Pb,210Po, and7Be data were collected on US GEOTRACES cruise GP15 (Pacific Meridional Transect, 152°W; 2018).210Pb fluxes are low close to the Alaskan margin, increase to a maximum at ∼43°N, then decrease to lower values. There is good agreement between210Pb fluxes and long‐term land‐based fluxes during the SEAREX program (1970–1980s), as well as between GP15 and GP16 (East Pacific Zonal Transect, 12°S; 2013) at adjacent stations. A normalized fractionf(7Be,210Pb) is used to discern aerosols with upper (highf) versus lower (lowf) troposphere sources. Alaskan/North Pacific aerosols show significant continental influence while equatorial/South Pacific aerosols are supplied to the marine boundary layer from the upper troposphere. Lithogenic trace elements Al and Ti show inverse correlations withf(7Be,210Pb), supporting a continental boundary layer provenance while anthropogenic Pb shows no clear relationship withf(7Be,210Pb). All but four samples have210Po/210Pb activity ratios <0.2 suggesting short aerosol residence time. Among the four samples (210Po/210Pb = 0.42–0.88), two suggest an upper troposphere source and longer aerosol residence time while the remaining two cannot be explained by long aerosol residence time nor a significant component of dust. We hypothesize that enrichments of210Po in them are linked to Po enrichments in the sea surface microlayer, possibly through Po speciation as a dissolved organic or dimethyl polonide species.

    more » « less
  3. Abstract

    Climate change is transforming the Arctic Ocean in unprecedented ways which can be most directly observed in the systematic decline in seasonal ice coverage. From the collection and analysis of particulate and dissolved activities of210Po and210Pb from four deepwater superstations, as a part of the US Arctic GEOTRACES cruise during 2015, and in conjunction with previously published data, the temporal and spatial variations in their activities, inventories and residence times are evaluated. The results show that the partitioning of particulate and dissolved phases has changed significantly in the 8 years between 2007 and 2015, while the total210Po and210Pb activities have remained relatively unchanged. Observed total210Po/210Pb activity ratio was less than unity in all deepwater stations, implying disequilibria in the entire water column. From the distribution of total210Po and210Pb in the upper 500 m of all major Arctic Basins, the derived scavenging efficiencies decrease as per the following sequence: Makarov Basin > Gakkel Bridge > Canada Basin Nansen Basin ∼ Amundsen Basin > Alpha Ridge, which is the reverse order of the calculated residence times of210PoT. The scavenging intensities differ between the fully ice‐covered, partially ice‐covered, and no ice‐covered stations, as observed from the differences in the average activities of210Po and210Pb. The average settling velocity of particulate matter based on the210Pb activity is similar to the published values based on230Th, indicating removal mechanism(s) of Th and Pb is (are) similar.

    more » « less
  4. This dataset includes concentrations of dissolved (<0.4 micrometers (µm)) and labile particulate (0.4-5 µm and >5 µm) phosphorus (P), vanadium (V), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in shipboard incubation samples collected during the EXports Processes in the Oceans from RemoTe Sensing (EXPORTS) North Pacific (NP) cruise RR1813 on the R/V Roger Revelle near Ocean Station PAPA (Station P). 
    more » « less
  5. Abstract

    Sinking particles strongly regulate the distribution of reactive chemical substances in the ocean, including particulate organic carbon and other elements (e.g., P, Cd, Mn, Cu, Co, Fe, Al, and232Th). Yet, the sinking fluxes of trace elements have not been well described in the global ocean. The U.S. GEOTRACES campaign in the North Atlantic (GA03) offers the first data set in which the sinking flux of carbon and trace elements can be derived using four different radionuclide pairs (238U:234Th;210Pb:210Po;228Ra:228Th; and234U:230Th) at stations co‐located with sediment trap fluxes for comparison. Particulate organic carbon, particulate P, and particulate Cd fluxes all decrease sharply with depth below the euphotic zone. Particulate Mn, Cu, and Co flux profiles display mixed behavior, some cases reflecting biotic remineralization, and other cases showing increased flux with depth. The latter may be related to either lateral input of lithogenic material or increased scavenging onto particles. Lastly, particulate Fe fluxes resemble fluxes of Al and232Th, which all have increasing flux with depth, indicating a dominance of lithogenic flux at depth by resuspended sediment transported laterally to the study site. In comparing flux estimates derived using different isotope pairs, differences result from different timescales of integration and particle size fractionation effects. The range in flux estimates produced by different methods provides a robust constraint on the true removal fluxes, taking into consideration the independent uncertainties associated with each method. These estimates will be valuable targets for biogeochemical modeling and may also offer insight into particle sinking processes.

    more » « less