skip to main content


Title: Preliminary Evidence of Madden‐Julian Oscillation Effects on Ultrafast Tropical Waves in the Thermosphere
Abstract

Over the past two decades mounting evidence demonstrated that terrestrial weather significantly influences the dynamics and mean state of the thermosphere. While important progress has been made in understanding how this coupling occurs on hourly to daily time scales, large uncertainty still exists on this effect around intraseasonal (∼30–90 days) time scales. In this work, analyses of Thermosphere Ionosphere Mesosphere Energetics Dynamics‐Sounding of the Atmosphere using Broadband Emission Radiometry temperatures near 110 km and Gravity field and steady‐state Ocean Circulation Explorer cross‐track winds near 260 km reveal prominent intraseasonal oscillations in the equatorial (±15°) zonal mean lower and middle thermosphere. Similar intraseasonal oscillations are found in the amplitudes of the diurnal eastward propagating tide with Zonal Wavenumber 3 (DE3) and the quasi‐3‐day ultrafast Kelvin wave, two prominent ultrafast tropical waves (UFTWs) excited by deep tropical tropospheric convection. Numerical simulations from the Specified‐Dynamics Whole Atmosphere Community Climate Model eXtended demonstrate a significant connection between these UFTW and the Madden‐Julian Oscillation (MJO). Compared to the boreal winter mean state, thermospheric UFTW amplitudes are larger (+5 to +12%) during MJO Phases 2–3 and smaller (−3% to −12%) during MJO Phases 6–8. Significant variations are also found with respect to the phase of the mesospheric semiannual oscillation (MSAO) and stratospheric quasi‐biannual oscillation (SQBO), with larger (±12–16%) thermospheric amplitudes during westward MSAO/SQBO phase and smaller (±3–6%) amplitudes during eastward MSAO/SQBO phase, in accordance with theoretical interpretations. This study suggests that UFTW may play a large role in coupling tropospheric intraseasonal variability to the thermosphere, raising important questions including implications for the whole atmosphere system.

 
more » « less
NSF-PAR ID:
10374624
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
5
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Madden‐Julian Oscillation (MJO), an eastward‐moving disturbance near the equator (±30°) that typically recurs every ∼30–90 days in tropical winds and clouds, is the dominant mode of intraseasonal variability in tropical convection and circulation and has been extensively studied due to its importance for medium‐range weather forecasting. A previous statistical diagnostic of SABER/TIMED observations and the MJO index showed that the migrating diurnal (DW1) and the important nonmigrating diurnal (DE3) tide modulates on MJO‐timescale in the mesosphere/lower thermosphere (MLT) by about 20%–30%, depending on the MJO phase. In this study, we address the physics of the underlying coupling mechanisms using SABER, MERRA‐2 reanalysis, and SD‐WACCMX. Our emphasis was on the 2008–2010 time period when several strong MJO events occurred. SD‐WACCMX and SABER tides show characteristically similar MJO‐signal in the MLT region. The tides largely respond to the MJO in the tropospheric tidal forcing and less so to the MJO in tropospheric/stratospheric background winds. We further quantify the MJO response in the MLT region in the SD‐WACCMX zonal and meridional momentum forcing by separating the relative contributions of classical (Coriolis force and pressure gradient) and nonclassical forcing (advection and gravity wave drag [GWD]) which transport the MJO‐signal into the upper atmosphere. Interestingly, the tidal MJO‐response is larger in summer due to larger momentum forcing in the MLT region despite the MJO being most active in winter. We find that tidal advection and GWD forcing in MLT can work together or against each other depending on their phase relationship to the MJO‐phases.

     
    more » « less
  2. Abstract

    This work shows a 3-year climatology of the horizontal components of the solar diurnal tide, obtained from wind measurements made by a multistatic specular meteor radar (SIMONe) located in Jicamarca, Peru (12$$^\circ$$S, 77$$^\circ$$W). Our observations show that the meridional component is more intense than the zonal component, and that it exhibits its maxima shifted with respect to the equinox times (i.e., the largest peak occurs in August–September, and the second one in April–May). The zonal component only shows a clear maximum in August–September. This observational climatology is compared to a climatology obtained with the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X). Average comparisons indicate that the model amplitudes are 50% smaller than the observed ones. The WACCM-X results are also used in combination with observed altitude profiles of the tidal phases to understand the relative contributions of migrating and non-migrating components. Based on this, we infer that the migrating diurnal tide (DW1) dominates in general, but that from June until September (November until July) the DE3 (DW2) may have a significant contribution to the zonal (meridional) component. Finally, applying wavelet analysis to the complex amplitude of the total diurnal tide, modulating periods between 5 and 80 days are observed in the SIMONe measurements and the WACCM-X model. These modulations might be associated to planetary waves and intraseasonal oscillations in the lower tropical atmosphere.

    Graphical Abstract

     
    more » « less
  3. Abstract

    Recent observations have indicated significant modulation of the Madden–Julian oscillation (MJO) by the phase of the stratospheric quasi-biennial oscillation (QBO) during boreal winter. Composites of the MJO show that upper-tropospheric ice cloud fraction and water vapor anomalies are generally collocated, and that an eastward tilt with height in cloud fraction exists. Through radiative transfer calculations, it is shown that ice clouds have a stronger tropospheric radiative forcing than do water vapor anomalies, highlighting the importance of incorporating upper-tropospheric–lower-stratospheric processes into simple models of the MJO. The coupled troposphere–stratosphere linear model previously developed by the authors is extended by including a mean wind in the stratosphere and a prognostic equation for cirrus clouds, which are forced dynamically and allowed to modulate tropospheric radiative cooling, similar to the effect of tropospheric water vapor in previous formulations. Under these modifications, the model still produces a slow, eastward-propagating mode that resembles the MJO. The sign of zonal mean wind in the stratosphere is shown to control both the upward wave propagation and tropospheric vertical structure of the mode. Under varying stratospheric wind and interactive cirrus cloud radiation, the MJO-like mode has weaker growth rates under stratospheric westerlies than easterlies, consistent with the observed MJO–QBO relationship. These results are directly attributable to an enhanced barotropic mode under QBO easterlies. It is also shown that differential zonal advection of cirrus clouds leads to weaker growth rates under stratospheric westerlies than easterlies. Implications and limitations of the linear theory are discussed.

    Significance Statement

    Recent observations have shown that the strength of the Madden–Julian oscillation (MJO), a global-scale envelope of wind and rain that slowly moves eastward in the tropics and dominates global-weather variations on time scales of around a month, is strongly influenced by the direction of the winds in the lower stratosphere, the layer of the atmosphere that lies above where weather occurs. So far, modeling studies have been unable to reproduce this connection in global climate models. The purpose of this study is to investigate the mechanisms through which the stratosphere can modulate the MJO, by using simple theoretical models. In particular, we point to the role that ice clouds high in the atmosphere play in influencing the MJO.

     
    more » « less
  4. Abstract

    A strong mountain wave, observed over Central Europe on 12 January 2016, is simulated in 2D under two fixed background wind conditions representing opposite tidal phases. The aim of the simulation is to investigate the breaking of the mountain wave and subsequent generation of nonprimary waves in the upper atmosphere. The model results show that the mountain wave first breaks as it approaches a mesospheric critical level creating turbulence on horizontal scales of 8–30 km. These turbulence scales couple directly to horizontal secondary waves scales, but those scales are prevented from reaching the thermosphere by the tidal winds, which act like a filter. Initial secondary waves that can reach the thermosphere range from 60 to 120 km in horizontal scale and are influenced by the scales of the horizontal and vertical forcing associated with wave breaking at mountain wave zonal phase width, and horizontal wavelength scales. Large‐scale nonprimary waves dominate over the whole duration of the simulation with horizontal scales of 107–300 km and periods of 11–22 minutes. The thermosphere winds heavily influence the time‐averaged spatial distribution of wave forcing in the thermosphere, which peaks at 150 km altitude and occurs both westward and eastward of the source in the 2 UT background simulation and primarily eastward of the source in the 7 UT background simulation. The forcing amplitude is2that of the primary mountain wave breaking and dissipation. This suggests that nonprimary waves play a significant role in gravity waves dynamics and improved understanding of the thermospheric winds is crucial to understanding their forcing distribution.

     
    more » « less
  5. Abstract

    The 2022 Tongan volcanic eruption released significant energy into the atmosphere. Tropospheric satellite images show that the eruption generated pressure waves that traveled globally. The Global Observation of the Limb and Disk (GOLD) mission observed significant wave‐like thermospheric temperature perturbations (>100 K) from 12 to 16 UT. These temperature perturbations' spatial curvatures and arrival times are initially similar to the tropospheric wave‐fronts but differ significantly with eastward propagation. The perturbations had a phase speed of ∼300–400 m/s and wavelengths greater than 2,400 km. Near‐concurrent Ionospheric Connection Explorer neutral wind measurements suggest that the eruption's effects reversed the direction of the prevailing thermospheric zonal winds around the perturbed regions. The eruption's global and whole atmospheric effects provide a unique opportunity to study how different atmospheric layers exchange energy and momentum during explosive events. GOLD's synoptic observations are uniquely positioned to study these effects in the middle thermosphere.

     
    more » « less