skip to main content


Title: Equatorial Propagation of the Magnetosonic Mode Across the Plasmapause: 2‐D PIC Simulations
Abstract

Recent studies have indicated that fast magnetosonic waves (also referred to as equatorial noise) excited far outside the plasmapause cannot propagate deep into the plasmasphere because of the preferential azimuthal propagation of the waves at the source region. Since conditions in the low‐density plasma trough are typically favorable for the wave excitation, one possible explanation for the magnetosonic wave origin inside the plasmapause is refraction of the waves excited in the plasma trough but close to the plasmapause. In this study, two‐dimensional particle‐in‐cell (PIC) simulations are carried out at the dipole magnetic equator to investigate the self‐consistent excitation and propagation of magnetosonic waves across the steep plasmapause density gradient. The simulations show that the magnetosonic waves grow outside the plasmapause and propagate predominantly in the azimuthal direction. However, the waves excited close to the plasmapause experience refraction toward the density gradient, allowing them to cross the plasmapause and then propagate dominantly toward the Earth. The amount of refraction is in good agreement with a theoretical prediction based on the geometric optic approximation. We find that the refraction at the plasmapause can redirect magnetosonic waves toward the Earth, but an additional mechanism is needed to account for the statistical properties of the wave electric field polarization reported in the plasmasphere.

 
more » « less
NSF-PAR ID:
10374652
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
124
Issue:
6
ISSN:
2169-9380
Page Range / eLocation ID:
p. 4424-4444
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two‐dimensional hybrid particle‐in‐cell (PIC) simulations are carried out on a constantL‐shell (or drift shell) surface of the dipole magnetic field to investigate the generation process of near‐equatorial fast magnetosonic waves (a.k.a equatorial noise; MSWs hereafter) in the inner magnetosphere. The simulation domain on a constantL‐shell surface adopted here allows wave propagation and growth in the azimuthal direction (as well as along the field line) and is motivated by the observations that MSWs propagate preferentially in the azimuthal direction in the source region. Furthermore, the equatorial ring‐like proton distribution used to drive MSWs in the present study is (realistically) weakly anisotropic. Consequently, the ring‐like velocity distribution projected along the field line by Liouville's theorem extends to rather high latitude, and linear instability analysis using the local plasma conditions predicts substantial MSW growth up to±27° latitude. In the simulations, however, the MSW intensity maximizes near the equator and decreases quasi‐exponentially with latitude. Further analysis reveals that the stronger equatorward refraction at higher latitude due to the larger gradient of the dipole magnetic field strength prevents off‐equatorial MSWs from growing continuously, whereas MSWs of equatorial origin experience little refraction and can fully grow. Furthermore, the simulated MSWs exhibit a rather complex wave field structure varying with latitude, and the scattering of energetic ring‐like protons in response to MSW excitation occurs faster than the bounce period of those protons so that they do not necessarily follow Liouville's theorem during MSW excitation.

     
    more » « less
  2. Abstract

    Recent analysis of an event observed by the Van Allen Probes in the source region outside the plasmapause has shown that fast magnetosonic waves (also referred to as equatorial noise) propagate preferentially in the azimuthal direction, implying that wave amplification should occur during azimuthal propagation. To demonstrate this, we carry out 2‐D particle‐in‐cell simulations of the fast magnetosonic mode at the dipole magnetic equator with the simulation box size, the magnetic field inhomogeneity, and the plasma parameters chosen from the same event recently analyzed. The self‐consistently evolving electric and magnetic field fluctuations are characterized by spectral peaks at harmonics of the local proton cyclotron frequency. The azimuthal component of the electric field fluctuations is larger than the radial component, indicating wave propagation mainly along the azimuthal direction. Because the simulation box is within the source region, this also implies wave amplification mainly during azimuthal propagation. The excellent agreement between the wave polarization properties of the present simulations and the recently reported observations is clear evidence that the main wave amplification occurs during azimuthal propagation in the source region.

     
    more » « less
  3. Abstract

    We report plasma wave observations of equatorial magnetosonic waves at integer harmonics of the local gyrofrequency of doubly ionized helium (). The waves were observed by Van Allen Probe A on 08 Feb 2014 when the spacecraft was in the afternoon magnetic local time sector nearinside of the plasmasphere. Analysis of the complementary in‐situ energetic ion measurements (1–300 keV) reveals the presence of a helium ion ring distribution centered near 30 keV. Theoretical linear growth rate calculations suggest that the local plasma and field conditions can support the excitation of the magnetosonic waves from the unstable ring distribution. This represents the first report of the generation of magnetosonic equatorial noise via a ring distribution in energeticions in the near‐Earth space plasma environment.

     
    more » « less
  4. Abstract

    Observations show that magnetic pulsations with frequencies around 1 mHz are frequently detected simultaneously at different latitudes on the ground, in the inner magnetosphere, and in the solar wind. The coupling between oscillations in the dynamic pressure or magnetic field carried by the solar wind and the ultra‐low frequency (ULF) waves detected on the ground at high latitudes has been suggested in several studies. We present results from a numerical study of ultra‐low‐frequency waves detected by the ground magnetometers at middle latitudes during substorm. We investigate the hypothesis that these waves are generated by the ionospheric feedback instability driven by the large‐scale electric field in the ionosphere. This field is associated with the surface waves propagating along the ambient magnetic field on a strong perpendicular gradient in the plasma density occurring in the equatorial magnetosphere. The gradient in the plasma density is associated with the plasmapause. The plasmapause moves to the middle latitude when the plasmasphere erodes during substorm. The energy from the external driver can be coupled to the large‐scale surface Alfvén waves traveling along the field lines into the ionosphere and generating small‐scale intense ULF waves and field‐aligned currents at middle latitudes. The simulations of the two‐fluid magnetohydrodynamics model confirm this scenario, and the numerical results show a good quantitative agreement with the observations.

     
    more » « less
  5. Abstract

    To understand the enhancement of Pi2 pulsations inside the plasmasphere in response to the plasma sheet Pi2 wave source, we conduct a statistical investigation of 208 conjunction events by using simultaneous two‐point measurements with one satellite located in the plasmasphere and the other one located in the plasma sheet. All the events had a Pi2 compressional wave source observed in the plasma sheet as indicated by their association with bursty bulk flows (BBFs), but for about 25% of the events there were no corresponding enhancements in plasmaspheric Pi2 waves. For events with plasmaspheric Pi2 wave enhancements, a cavity or virtual resonance was likely the dominant wave mode, while excitation of field line resonance was also observed. We select two groups of events: strong (weak) group with the plasmaspheric compressional wave enhancements above 75% percentile (below 25% percentile), and conduct a statistical‐significance evaluation of the differences between the two groups. The strong events were observed closer to midnight than the weak events. The plasma sheet wave source that has a larger wave amplification or larger dipolarization associated with BBFs is more likely to excite stronger plasmaspheric wave enhancements. The strong events occurred more often with a pre‐condition of lower Auroral Electrojet (AE)* levels than did weak events. We explain these dependencies as strong events being associated with more favorable conditions that allow the inward‐propagating compressional waves from the plasma sheet wave source to reach the plasmapause and excite the plasmaspheric waves.

     
    more » « less