skip to main content


Title: Characteristics and Sources of Intense Geoelectric Fields in the United States: Comparative Analysis of Multiple Geomagnetic Storms
Abstract

Intense geoelectric fields during geomagnetic storms drive geomagnetically induced currents in power grids and other infrastructure, yet there are limited direct measurements of these storm‐time geoelectric fields. Moreover, most previous studies examining storm‐time geoelectric fields focused on single events or small geographic regions, making it difficult to determine the typical source(s) of intense geoelectric fields. We perform the first comparative analysis of (a) the sources of intense geoelectric fields over multiple geomagnetic storms, (b) using 1‐s cadence geoelectric field measurements made at (c) magnetotelluric survey sites distributed widely across the United States. Temporally localized intense perturbations in measured geoelectric fields with prominences (a measure of the relative amplitude of geoelectric field enhancement above the surrounding signal) of at least 500 mV/km were detected during geomagnetic storms with Dst minima (Dstmin) of less than −100 nT from 2006 to 2019. Most of the intense geoelectric fields were observed in resistive regions with magnetic latitudes greater than 55° even though we have 167 sites located at lower latitudes during geomagnetic storms of −200 nT ≤ Dstmin< −100 nT. Our study indicates intense short‐lived (<1 min) and geoelectric field perturbations with periods on the order of 1–2 min are common. Most of these perturbations cannot be resolved with 1‐min data because they correspond to higher frequency or impulsive phenomena that vary on timescales shorter than that sampling interval. The sources of geomagnetic perturbations inducing these intense geoelectric fields include interplanetary shocks, interplanetary magnetic field turnings, substorms, and ultralow frequency waves.

 
more » « less
NSF-PAR ID:
10374706
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Space Weather
Volume:
20
Issue:
4
ISSN:
1542-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    An analysis is made of geophysical records of the 24 March 1940, magnetic storm and related reports of interference on long‐line communication and power systems across the contiguous United States and, to a lesser extent, Canada. Most long‐line system interference occurred during local daytime, after the second of two storm sudden commencements and during the early part of the storm's main phase. The high degree of system interference experienced during this storm is inferred to have been due to unusually large‐amplitude and unusually rapid geomagnetic field variation, possibly driven by interacting interplanetary coronal‐mass ejections. Geomagnetic field variation, in turn, induced geoelectric fields in the electrically conducting solid Earth, establishing large potential differences (voltages) between grounding points at communication depots and transformer substations connected by long transmission lines. It is shown that March 1940 storm‐time communication‐ and power‐system interference was primarily experienced over regions of high electromagnetic surface impedance, mainly in the upper Midwest and eastern United States. Potential differences measured on several grounded long lines during the storm exceeded 1‐min resolution voltages that would have been induced by the March 1989 storm. In some places, voltages exceeded American electric‐power‐industry benchmarks. It is concluded that the March 1940 magnetic storm was unusually effective at inducing geoelectric fields. Although modern communication systems are now much less dependent on long electrically conducting transmission lines, modern electric‐power‐transmission systems are more dependent on such lines, and they, thus, might experience interference with the future occurrence of a storm as effective as that of March 1940.

     
    more » « less
  2. Abstract

    This study provides first storm time observations of the westward‐propagating medium‐scale traveling ionospheric disturbances (MSTIDs), particularly, associated with characteristic subauroral storm time features, storm‐enhanced density (SED), subauroral polarization stream (SAPS), and enhanced thermospheric westward winds over the continental US. In the four recent (2017–2019) geomagnetic storm cases examined in this study (i.e., 2018‐08‐25/26, 2017‐09‐07/08, 2017‐05‐27/28, and 2016‐02‐02/03 with minimum SYM‐H index −206, −146, −142, and −58 nT, respectively), MSTIDs were observed from dusk‐to‐midnight local times predominately during the intervals of interplanetary magnetic field (IMF) Bz stably southward. Multiple wavefronts of the TIDs were elongated NW‐SE, 2°–3° longitude apart, and southwestward propagated at a range of zonal phase speeds between 100 and 300 m/s. These TIDs initiated in the northeastern US and intensified or developed in the central US with either the coincident SED structure (especially the SED basis region) or concurrent small electron density patches adjacent to the SED. Observations also indicate coincident intense storm time electric fields associated with the magnetosphere–ionosphere–thermosphere coupling electrodynamics at subauroral latitudes (such as SAPS) as well as enhanced thermospheric westward winds. We speculate that these electric fields trigger plasma instability (with large growth rates) and MSTIDs. These electrified MSTIDs propagated westward along with the background westward ion flow which resulted from the disturbance westward wind dynamo and/or SAPS.

     
    more » « less
  3. Abstract

    The behaviors of thermospheric nitric oxide (NO) cooling during the 15 May 2005 intense geomagnetic storm are studied using measurements by the Sounding of the Atmosphere using Broadband Emission Radiometry instrument on board the Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics satellite and simulations by the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model. The geomagnetic storm was the most intense (Dst = −247 nT) of 2005 with a short and rapid main phase and long‐lasting recovery (more than 3 days). NO cooling responded globally to the geomagnetic storm within 2 hr after the onset of storm main phase. The most significant NO cooling increases occurred at middle and low latitudes in the Northern Hemisphere and at middle latitudes in the Southern Hemisphere. The model outputs agree with observations in general but overestimate the NO cooling at high latitudes and underestimate the NO cooling elsewhere. Furthermore, observations show a significant upward shifting of the NO cooling peak altitude in the storm main phase and a significant downward shifting of the NO cooling peak altitude during the storm recovery phase at low latitudes. An unusual double‐peak structure in the NO cooling rate appeared during storm main phase and recovery phase. By investigating the NO cooling vertical profiles, we suggest that the horizontal equatorward transport plays an important role in inducing these significant variations of the NO cooling peak altitude.

     
    more » « less
  4. Abstract

    The occurrence of St. Patrick's Day (17 March) geomagnetic storms during two different years (2013 and 2015) with similar solar flux levels but varying storm intensity provided an opportunity to compare and contrast the responses of the ionosphere‐thermosphere (IT) system to different levels of geomagnetic activity. The evolution of positive ionospheric storms at the southern polar stations Bharati (76.6°S MLAT) and Davis (76.2°S MLAT) and its causative connection to the solar wind driving mechanisms during these storms has been investigated in this paper. During the main phase of both the storms, significant enhancements in TEC and phase scintillation were observed in the magnetic noon/ midnight period at Bharati and Davis. The TEC in the midnight sector on 17 March 2015 was significantly higher compared to that on 17 March 2013, in line with the storm intensity. The TEC enhancements during both the storm events are associated with the formation of the storm‐enhanced densities (SEDs)/tongue of ionization (TOI). The strong and sustained magnetopause erosion led to the prevalence of stronger storm time electric fields (prompt penetration electric field (PPEF)/subauroral polarization streams (SAPS)) for long duration on 17 March 2015. This combined with the action of neutral winds at midlatitudes favored the formation of higher plasma densities in the regions of SED formation on this day. The same was weaker during the 17 March 2013 storm due to the fast fluctuating nature of interplanetary magnetic field (IMF)Bz. This study shows that the duration and extent of magnetopause erosion play an important role in the spatiotemporal evolution of the plasma density distribution in the high‐midlatitude ionosphere.

     
    more » « less
  5. Abstract

    Nearly all studies of impulsive magnetic perturbation events (MPEs) with large magnetic field variability (dB/dt) that can produce dangerous geomagnetically induced currents (GICs) have used data from the Northern Hemisphere. Here we present details of four large‐amplitude MPE events (|ΔBx| > 900 nT and |dB/dt| > 10 nT/s in at least one component) observed between 2015 and 2018 in conjugate high‐latitude regions (65–80° corrected geomagnetic latitude), using magnetometer data from (1) Pangnirtung and Iqaluit in eastern Arctic Canada and the magnetically conjugate South Pole Station in Antarctica and (2) the Greenland West Coast Chain and two magnetically conjugate chains in Antarctica, AAL‐PIP and BAS LPM. From one to three different isolated MPEs localized in corrected geomagnetic latitude were observed during three premidnight events; many were simultaneous within 3 min in both hemispheres. Their conjugate latitudinal amplitude profiles, however, matched qualitatively at best. During an extended postmidnight interval, which we associate with an interval of omega bands, multiple highly localized MPEs occurred independently in time at each station in both hemispheres. These nighttime MPEs occurred under a wide range of geomagnetic conditions, but common to each was a negative interplanetary magnetic fieldBzthat exhibited at least a modest increase at or near the time of the event. A comparison of perturbation amplitudes to modeled ionospheric conductances in conjugate hemispheres clearly favored a current generator model over a voltage generator model for three of the four events; neither model provided a good fit for the premidnight event that occurred near vernal equinox.

     
    more » « less