skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of 3‐D Radiation‐Topography Interactions on Surface Temperature and Energy Budget Over the Tibetan Plateau in Winter
Abstract We incorporate a parameterization to quantify the effect of three‐dimensional (3‐D) radiation‐topography interactions on the solar flux absorbed by the surfaces, including multiple reflections between surfaces and differences in sunward/shaded slopes, in the Community Climate System Model version 4 (CCSM4). A sensitivity experiment is carried out using CCSM4 with the prescribed sea surface temperature for year 2000 to investigate its impact on energy budget and surface temperature over the Tibetan Plateau (TP). The results show that the topographic effect reduces the upward surface shortwave flux and, at the same time, enhance snowmelt rate over the central and southern parts of TP. Comparing to observations and the ensemble of Coupled Model Intercomparison Project Phase 5 (CMIP5), we found that CMIP5 models have a strong cold bias of 3.9 K over TP, partially induced by the strong reflection of shortwave fluxes. We show that the inclusion of topographic effect reduces the substantial biases of upward shortwave fluxes and surface air temperatures over TP by 13% in the CCSM4 model.  more » « less
Award ID(s):
1660587
PAR ID:
10374735
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
124
Issue:
3
ISSN:
2169-897X
Page Range / eLocation ID:
p. 1537-1549
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract An effective method to understand cloud processes and to assess the fidelity with which they are represented in climate models is the cloud controlling factor framework, in which cloud properties are linked with variations in large-scale dynamical and thermodynamical variables. This study examines how midlatitude cloud radiative effects (CRE) over oceans co-vary with four cloud controlling factors: mid-tropospheric vertical velocity, estimated inversion strength (EIS), near-surface temperature advection, and sea surface temperature (SST), and assesses their representation in CMIP6 models with respect to observations and CMIP5 models. CMIP5 and CMIP6 models overestimate the sensitivity of midlatitude CRE to perturbations in vertical velocity, and underestimate the sensitivity of midlatitude shortwave CRE to perturbations in EIS and temperature advection. The largest improvement in CMIP6 models is a reduced sensitivity of CRE to vertical velocity perturbations. As in CMIP5 models, many CMIP6 models simulate a shortwave cloud radiative warming effect associated with a poleward shift in the Southern Hemisphere (SH) midlatitude jet stream, an effect not present in observations. This bias arises because most models’ shortwave CRE are too sensitive to vertical velocity perturbations and not sensitive enough to EIS perturbations, and because most models overestimate the SST anomalies associated with SH jet shifts. The presence of this bias directly impacts the transient surface temperature response to increasing greenhouse gases over the Southern Ocean, but not the global-mean surface temperature. Instead, the models’ climate sensitivity is correlated with their shortwave CRE sensitivity to surface temperature advection perturbations near 40°S, with models with more realistic values of temperature advection sensitivity generally having higher climate sensitivity. 
    more » « less
  2. Abstract Arctic moisture intrusions have played an important role in warming the Arctic over the past few decades. A prior study found that Coupled Model Intercomparison Project Phase 5 (CMIP5) models exhibit large regional biases in the moisture flux across 70°N. It is shown here that the systematic misrepresentation of the moisture flux is related to the models' overprediction of zonal wavenumberk = 2 contribution and underprediction ofk = 1 contribution to the flux. Models with a warmer tropical upper troposphere and El‐Niño‐like tropical surface temperature tend to simulate strongerk = 2 flux, whilek = 1 flux is uncorrelated with tropical upper tropospheric temperature and is associated with La‐Niña‐like surface temperature. The models also overpredict the transient eddy moisture flux while underpredicting the stationary eddy flux. Moreover, future projections in Representative Concentration Pathway 8.5 (RCP8.5) simulations show trends in moisture flux that is consistent with biases in historical simulations, suggesting that these CMIP5 projections reflect the same error(s) that cause the model biases. 
    more » « less
  3. Abstract Tides are an important factor shaping the sea ice system in the Arctic Ocean by altering vertical heat fluxes and advection patterns. Unfortunately, observations are sparse, and the analysis of tides is complicated by the proximity of wind-driven inertial oscillations to the semidiurnal frequencies. Furthermore, computational costs typically prohibit the inclusion of tides in ocean models, leaving a significant gap in our understanding. Motivated by summer observations showing elevated downward surface heat fluxes in the presence of tides, we analyzed simulations carried out with an eddy-permitting coupled ice–ocean model to quantify the impact of tidal effects on Arctic sea ice. In line with previous studies, we find an overall decrease in sea ice volume when tides are included in the simulations, associated with increased vertical mixing and the upward flux of heat from deeper layers of the Arctic Ocean, but this sea ice volume decrease is less pronounced than previously thought. Surprisingly, our simulations suggest that in summer, Arctic sea ice area is larger, by up to 1.5%, when tides are included in the simulations. This effect is partly caused by an increased downward surface heat flux and a consequently lower sea surface temperature, delaying sea ice melting predominantly in the Siberian Seas, where tides are moderately strong and the warm Atlantic Water core is located relatively deep and does not encroach on the wide continental shelf. Here, tidally enhanced downward heat flux from the surface in summer can dominate over the increased upward heat flux from the warm Atlantic Water layer. Significance StatementThis study sheds light on the complex and understudied role of tides in Arctic sea ice dynamics. By utilizing advanced computer models, our research uncovers that, contrary to common expectations, tides contribute to a seasonal increase in sea ice area by up to 1.5% in summer. This effect is attributed to enhanced advection of sea ice into the Siberian Seas and a local increase in downward heat flux reducing sea surface temperatures, thereby delaying sea ice melting in this region. Our findings challenge prevailing notions about the negative impact of tides on sea ice and highlight the importance of incorporating tidal impacts in ocean models to improve predictions of Arctic sea ice changes, key for our understanding of both Arctic and global climate dynamics. 
    more » « less
  4. Accurate multidecadal radiative flux records are vital to understand Arctic amplification and constrain climate model uncertainties. Uncertainty in the NASA Clouds and the Earth’s Radiant Energy System (CERES)-derived irradiances is larger over sea ice than any other surface type and comes from several sources. The year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the central Arctic provides a rare opportunity to explore uncertainty in CERES-derived radiative fluxes. First, a systematic and statistically robust assessment of surface shortwave and longwave fluxes was conducted using in situ measurements from MOSAiC flux stations. The CERES Synoptic 1degree (SYN1deg) product overestimates the downwelling shortwave flux by +11.40 Wm–2 and underestimates the upwelling shortwave flux by –15.70 Wm–2 and downwelling longwave fluxes by –12.58 Wm–2 at the surface during summer. In addition, large differences are found in the upwelling longwave flux when the surface approaches the melting point (approximately 0°C). The biases in downwelling shortwave and longwave fluxes suggest that the atmosphere represented in CERES is too optically thin. The large negative bias in upwelling shortwave flux can be attributed in large part to lower surface albedo (–0.15) in satellite footprint relative to surface sensors. Additionally, the results show that the spectral surface albedo used in SYN1deg overestimates albedo in visible and mid-infrared bands. A series of radiative transfer model perturbation experiments are performed to quantify the factors contributing to the differences. The CERES-MOSAiC broadband albedo differences (approximately 20 Wm–2) explain a larger portion of the upwelling shortwave flux difference than the spectral albedo shape differences (approximately 3 Wm–2). In addition, the differences between perturbation experiments using hourly and monthly MOSAiC surface albedo suggest that approximately 25% of the sea ice surface albedo variability is explained by factors not correlated with daily sea ice concentration variability. Biases in net shortwave and longwave flux can be reduced to less than half by adjusting both albedo and cloud inputs toward observed values. The results indicate that improvements in the surface albedo and cloud data would substantially reduce the uncertainty in the Arctic surface radiation budget derived from CERES data products. 
    more » « less
  5. The southeast Indian Ocean (SEIO) exhibits decadal variability in sea surface temperature (SST) with amplitudes of ~0.2–0.3 K and covaries with the central Pacific ( r = −0.63 with Niño-4 index for 1975–2010). In this study, the generation mechanisms of decadal SST variability are explored using an ocean general circulation model (OGCM), and its impact on atmosphere is evaluated using an atmospheric general circulation model (AGCM). OGCM experiments reveal that Pacific forcing through the Indonesian Throughflow explains <20% of the total SST variability, and the contribution of local wind stress is also small. These wind-forced anomalies mainly occur near the Western Australian coast. The majority of SST variability is attributed to surface heat fluxes. The reduced upward turbulent heat flux ( Q T ; latent plus sensible heat flux), owing to decreased wind speed and anomalous warm, moist air advection, is essential for the growth of warm SST anomalies (SSTAs). The warming causes reduction of low cloud cover that increases surface shortwave radiation (SWR) and further promotes the warming. However, the resultant high SST, along with the increased wind speed in the offshore area, enhances the upward Q T and begins to cool the ocean. Warm SSTAs co-occur with cyclonic low-level wind anomalies in the SEIO and enhanced rainfall over Indonesia and northwest Australia. AGCM experiments suggest that although the tropical Pacific SST has strong effects on the SEIO region through atmospheric teleconnection, the cyclonic winds and increased rainfall are mainly caused by the SEIO warming through local air–sea interactions. 
    more » « less