skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parsing the Kinetic Energy Budget of the Ocean Surface Mixed Layer
Abstract The total rate of work done on the ocean by the wind is of considerable interest for understanding global energy balances, as the energy from the wind drives ocean currents, grows surface waves, and forces vertical mixing. A large but unknown fraction of this atmospheric energy is dissipated by turbulence in the upper ocean. The focus of this work is twofold. First, we describe a framework for evaluating the vertically integrated turbulent kinetic energy (TKE) equation using measurable quantities from a surface mooring, showing the connection to the atmospheric, mean oceanic, and wave energy. Second, we use this framework to evaluate turbulent energetics in the mixed layer using 10 months of mooring data. This evaluation is made possible by recent advances in estimating TKE dissipation rates from long‐enduring moorings. We find that surface fluxes are balanced by TKE dissipation rates in the mixed layer to within a factor of two.  more » « less
Award ID(s):
2049546 1756839 2023020
PAR ID:
10374771
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
2
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Energy is transferred from the atmosphere to the ocean primarily through ocean surface waves, and the majority is dissipated locally in the near‐surface ocean. Observations of turbulent kinetic energy (TKE) in the upper ocean have shown dissipation rates exceeding law‐of‐the‐wall theory by an order of magnitude. The excess near‐surface ocean TKE dissipation rate is thought to be driven primarily by wave breaking, which limits wave growth and transfers energy from the surface wave field to the wave‐affected layer of the ocean. Here, the statistical properties of breaking wave dynamics in a coastal area are extracted from visible imagery and used to estimate TKE dissipation rates due to breaking waves. The statistical properties of whitecap dynamics are quantified with Λ(c), a distribution of total whitecap crest length per unit area as a function of crest speed, and used to compute energy dissipation by breaking waves, Sds. Sdsapproximately balances elevated subsurface dissipation in young seas but accounts for only a fraction of subsurface dissipation in older seas. The wind energy input is estimated from wave spectra from polarimetric imagery and laser altimetry. Sdsbalances the wind energy input except under high winds. Λ(c)‐derived estimates of TKE dissipation rates by breaking waves compare well with the atmospheric deficit in TKE dissipation, a measure of energy input to the wave field (Cifuentes‐Lorenzen et al., 2024). These results tie the observed atmospheric dissipation deficit and enhancement in subsurface TKE dissipation to wave driven energy transport, constraining the TKE dissipation budget near the air‐sea interface. 
    more » « less
  2. Abstract This work serves as an observation‐based exploration into the role of wave‐driven turbulence at the air‐sea interface by measuring Turbulent Kinetic Energy (TKE) dissipation rates above and below the sea surface. Subsurface ocean measurements confirm a TKE dissipation rate enhancement relative to the predicted law‐of‐the‐wall (εobs > εp), which appears to be fully supported by wave breaking highlighting the role of the transport terms in balancing the subsurface TKE budget. Simultaneous measurements of TKE dissipation rates on the atmospheric side capture a deficit relative to the law‐of‐the‐wall (εobs < εp). This deficit is explained in terms of wave‐induced perturbations, with observed convergence to the law‐of‐the‐wall at 14 m above mean sea level. The deficit on the atmospheric side provides an estimate of the energy flux divergence in the wave boundary layer. An exponential function is used to integrate in the vertical and provide novel estimates of the amount of energy going into the wave field. These estimates correlate well with classic spectral input parameterizations and can be used to derive an effective wave‐scale, capturing wind‐wave coupling purely from atmospheric observations intimately tied to wave‐induced perturbations of the air‐flow. These atmospheric and oceanic observations corroborate the commonly assumed input‐dissipation balance for waves at wind speeds in the 8‐14 ms−1range in the presence of developed to young seas. At wind speeds above 14 ms−1under young seas ()observations suggest a deviation from the TKE input‐dissipation balance in the wave field. 
    more » « less
  3. Abstract Upper-ocean turbulence is central to the exchanges of heat, momentum, and gasses across the air/sea interface, and therefore plays a large role in weather and climate. Current understanding of upper-ocean mixing is lacking, often leading models to misrepresent mixed-layer depths and sea surface temperature. In part, progress has been limited due to the difficulty of measuring turbulence from fixed moorings which can simultaneously measure surface fluxes and upper-ocean stratification over long time periods. Here we introduce a direct wavenumber method for measuring Turbulent Kinetic Energy (TKE) dissipation rates, ϵ , from long-enduring moorings using pulse-coherent ADCPs. We discuss optimal programming of the ADCPs, a robust mechanical design for use on a mooring to maximize data return, and data processing techniques including phase-ambiguity unwrapping, spectral analysis, and a correction for instrument response. The method was used in the Salinity Processes Upper-ocean Regional Study (SPURS) to collect two year-long data sets. We find the mooring-derived TKE dissipation rates compare favorably to estimates made nearby from a microstructure shear probe mounted to a glider during its two separate two-week missions for (10 −8 ) ≤ ϵ ≤ (10 −5 ) m 2 s −3 . Periods of disagreement between turbulence estimates from the two platforms coincide with differences in vertical temperature profiles, which may indicate that barrier layers can substantially modulate upper-ocean turbulence over horizontal scales of 1-10 km. We also find that dissipation estimates from two different moorings at 12.5 m, and at 7 m are in agreement with the surface buoyancy flux during periods of strong nighttime convection, consistent with classic boundary layer theory. 
    more » « less
  4. Abstract This study analyzes observations collected by multilevel towers to estimate turbulence parameters in the atmospheric surface layer of two landfalling tropical cyclones (TCs). The momentum flux, turbulent kinetic energy (TKE) and dissipation rate increase with the wind speed independent of surface types. However, the momentum flux and TKE are much larger over land than over the coastal ocean at a given wind speed range. The vertical eddy diffusivity is directly estimated using the momentum flux and strain rate, which more quickly increases with the wind speed over a rougher surface. Comparisons of the eddy diffusivity estimated using the direct flux method and that using the friction velocity and height show good agreement. On the other hand, the traditional TKE method overestimates the eddy diffusivity compared to the direct flux method. The scaling coefficients in the TKE method are derived for the two different surface types to better match with the vertical eddy diffusivity based on the direct flux method. Some guidance to improve vertical diffusion parameterizations for TC landfall forecasts in weather simulations are also provided. 
    more » « less
  5. Abstract In this work, we seek to address the validity of Monin–Obukhov similarity theory (MOST) in the wave-affected surface boundary layer of the atmosphere. While bulk flux formulas which rely on MOST have been tested with and applied to measurements and models of air/sea interaction for several decades, the influences of surface wave–mediated fluxes on MOST have not been thoroughly quantified. We assess several months of direct covariance data from a stationary tower deployed with instruments inside the wave-affected surface layer. These measurements are analyzed in the context of the turbulent kinetic energy (TKE) equation and MOST, extending previous work due to the inclusion of directly estimated wave-coherent energy fluxes. Scaled TKE dissipation rates are reduced from what is predicted by MOST during events with large wave-coherent surface fluxes, resulting in a dissipation deficit in the energy budget (roughly 30%). However, we find that shear is much less impacted by these wave events showing much smaller deviations from baselines (less than 10%). During much of the experiment, the dissipation deficit is balanced by the wave-coherent pressure work, suggesting a general understanding of the combined turbulent and wave-driven energetics. However, several large storms in the fall of 2022 yielded much larger dissipation deficits than can be explained by the wave-coherent pressure work, highlighting that more work is needed to understand energetics in the wave-affected surface layer more generally. Significance StatementThe exchanges of heat, momentum, and gases between the air and the ocean are important for weather and climate prediction, ocean simulation, and wave models that are important for safe operations at sea. A current theory for these exchanges was designed for use over land but has been applied successfully over the ocean for several decades. One reason the overland theory [Monin–Obukhov similarity theory (MOST)] may not work as well is due to ocean waves, which change the nature of the surface in comparison with unmoving overland features like hills, mountains, and other topography. In particular, ocean waves grow with the wind, which means that they must draw down momentum and energy from the air above. In this paper, we work to understand why this theory for heat and momentum exchange at the surface (MOST) works well over ocean waves despite the unique physics when compared to wind over land. We find that the influence of waves is visible in some parts of the theory but that for the majority of conditions, the predictions from MOST should work well. 
    more » « less