skip to main content


Title: Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over the Conterminous US With a Global Variable Resolution Chemistry Model
Abstract

A new configuration of the Community Earth System Model (CESM)/Community Atmosphere Model with full chemistry (CAM‐chem) supporting the capability of horizontal mesh refinement through the use of the spectral element (SE) dynamical core is developed and called CESM/CAM‐chem‐SE. Horizontal mesh refinement in CESM/CAM‐chem‐SE is unique and novel in that pollutants such as ozone are accurately represented at human exposure relevant scales while also directly including global feedbacks. CESM/CAM‐chem‐SE with mesh refinement down to ∼14 km over the conterminous US (CONUS) is the beginning of the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICAv0). Here, MUSICAv0 is evaluated and used to better understand how horizontal resolution and chemical complexity impact ozone and ozone precursors over CONUS as compared to measurements from five aircraft campaigns, which occurred in 2013. This field campaign analysis demonstrates the importance of using finer horizontal resolution to accurately simulate ozone precursors such as nitrogen oxides and carbon monoxide. In general, the impact of using more complex chemistry on ozone and other oxidation products is more pronounced when using finer horizontal resolution where a larger number of chemical regimes are resolved. Large model biases for ozone near the surface remain in the Southeast US as compared to the aircraft observations even with updated chemistry and finer horizontal resolution. This suggests a need for adding the capability of replacing sections of global emission inventories with regional inventories, increasing the vertical resolution in the planetary boundary layer, and reducing model biases in meteorological variables such as temperature and clouds.

 
more » « less
NSF-PAR ID:
10374780
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
14
Issue:
6
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Community Earth System Model version 2 (CESM2) includes a detailed representation of chemistry throughout the atmosphere in the Community Atmosphere Model with chemistry and Whole Atmosphere Community Climate Model configurations. These model configurations use the Model for Ozone and Related chemical Tracers (MOZART) family of chemical mechanisms, covering the troposphere, stratosphere, mesosphere, and lower thermosphere. The new MOZART tropospheric chemistry scheme (T1) has a number of updates over the previous version (MOZART‐4) in CESM, including improvements to the oxidation of isoprene and terpenes, organic nitrate speciation, and aromatic speciation and oxidation and thus improved representation of ozone and secondary organic aerosol precursors. An evaluation of the present‐day simulations of CESM2 being provided for Climate Model Intercomparison Project round 6 (CMIP6) is presented. These simulations, using the anthropogenic and biomass burning emissions from the inventories specified for CMIP6, as well as online calculation of emissions of biogenic compounds, lightning NO, dust, and sea salt, indicate an underestimate of anthropogenic emissions of a variety of compounds, including carbon monoxide and hydrocarbons. The simulation of surface ozone in the southeast United States is improved over previous model versions, largely due to the improved representation of reactive nitrogen and organic nitrate compounds resulting in a lower ozone production rate than in CESM1 but still overestimates observations in summer. The simulation of tropospheric ozone agrees well with ozonesonde observations in many parts of the globe. The comparison of NOxand PAN to aircraft observations indicates the model simulates the nitrogen budget well.

     
    more » « less
  2. Abstract. We implement the GEOS-Chem chemistry module as a chemical mechanism in version 2 of the Community Earth System Model (CESM). Our implementation allowsthe state-of-the-science GEOS-Chem chemistry module to be used with identical emissions, meteorology, and climate feedbacks as the CAM-chemchemistry module within CESM. We use coupling interfaces to allow GEOS-Chem to operate almost unchanged within CESM. Aerosols are converted at eachtime step between the GEOS-Chem bulk representation and the size-resolved representation of CESM's Modal Aerosol Model (MAM4). Land-type informationneeded for dry-deposition calculations in GEOS-Chem is communicated through a coupler, allowing online land–atmosphere interactions. Wet scavengingin GEOS-Chem is replaced with the Neu and Prather scheme, and a common emissions approach is developed for both CAM-chem and GEOS-Chem in CESM. We compare how GEOS-Chem embedded in CESM (C-GC) compares to the existing CAM-chem chemistry option (C-CC) when used to simulate atmosphericchemistry in 2016, with identical meteorology and emissions. We compare the atmospheric composition and deposition tendencies between the twosimulations and evaluate the residual differences between C-GC and its use as a stand-alone chemistry transport model in the GEOS-Chem HighPerformance configuration (S-GC). We find that stratospheric ozone agrees well between the three models, with differences of less than 10 % inthe core of the ozone layer, but that ozone in the troposphere is generally lower in C-GC than in either C-CC or S-GC. This is likely due to greatertropospheric concentrations of bromine, although other factors such as water vapor may contribute to lesser or greater extents depending on theregion. This difference in tropospheric ozone is not uniform, with tropospheric ozone in C-GC being 30 % lower in the Southern Hemisphere whencompared with S-GC but within 10 % in the Northern Hemisphere. This suggests differences in the effects of anthropogenic emissions. Aerosolconcentrations in C-GC agree with those in S-GC at low altitudes in the tropics but are over 100 % greater in the upper troposphere due todifferences in the representation of convective scavenging. We also find that water vapor concentrations vary substantially between the stand-aloneand CESM-implemented version of GEOS-Chem, as the simulated hydrological cycle in CESM diverges from that represented in the source NASA Modern-Era Retrospective analysis for Research and Applications (Version 2; MERRA-2)reanalysis meteorology which is used directly in the GEOS-Chem chemistrytransport model (CTM). Our implementation of GEOS-Chem as a chemistry option in CESM (including full chemistry–climate feedback) is publicly available and is beingconsidered for inclusion in the CESM main code repository. This work is a significant step in the MUlti-Scale Infrastructure for Chemistry andAerosols (MUSICA) project, enabling two communities of atmospheric researchers (CESM and GEOS-Chem) to share expertise through a common modelingframework, thereby accelerating progress in atmospheric science. 
    more » « less
  3. Abstract. The impact of biomass burning (BB) on the atmospheric burden of volatile organic compounds (VOCs) is highly uncertain. Here we apply the GEOS-Chemchemical transport model (CTM) to constrain BB emissions in the western USA at ∼ 25 km resolution. Across three BB emission inventorieswidely used in CTMs, the inventory–inventory comparison suggests that the totals of 14 modeled BB VOC emissions in the western USA agree with eachother within 30 %–40 %. However, emissions for individual VOCs can differ by a factor of 1–5, driven by the regionally averaged emissionratios (ERs, reflecting both assigned ERs for specific biome and vegetation classifications) across the three inventories. We further evaluate GEOS-Chemsimulations with aircraft observations made during WE-CAN (Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption and Nitrogen) andFIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality) field campaigns. Despite being driven by different global BBinventories or applying various injection height assumptions, the model–observation comparison suggests that GEOS-Chem simulations underpredictobserved vertical profiles by a factor of 3–7. The model shows small to no bias for most species in low-/no-smoke conditions. We thus attribute thenegative model biases mostly to underestimated BB emissions in these inventories. Tripling BB emissions in the model reproduces observed verticalprofiles for primary compounds, i.e., CO, propane, benzene, and toluene. However, it shows no to less significant improvements for oxygenatedVOCs, particularly for formaldehyde, formic acid, acetic acid, and lumped ≥ C3 aldehydes, suggesting the model is missing secondarysources of these compounds in BB-impacted environments. The underestimation of primary BB emissions in inventories is likely attributable tounderpredicted amounts of effective dry matter burned, rather than errors in fire detection, injection height, or ERs, as constrained by aircraftand ground measurements. We cannot rule out potential sub-grid uncertainties (i.e., not being able to fully resolve fire plumes) in the nestedGEOS-Chem which could explain the negative model bias partially, though back-of-the-envelope calculation and evaluation using longer-term groundmeasurements help support the argument of the dry matter burned underestimation. The total ERs of the 14 BB VOCs implemented in GEOS-Chem onlyaccount for half of the total 161 measured VOCs (∼ 75 versus 150 ppb ppm−1). This reveals a significant amount of missing reactiveorganic carbon in widely used BB emission inventories. Considering both uncertainties in effective dry matter burned (× 3) and unmodeledVOCs (× 2), we infer that BB contributed to 10 % in 2019 and 45 % in 2018 (240 and 2040 Gg C) of the total VOC primaryemission flux in the western USA during these two fire seasons, compared to only 1 %–10 % in the standard GEOS-Chem. 
    more » « less
  4. Abstract. Bromine released from the decomposition of short-lived brominated source gases contributes as a sink of ozone in the lower stratosphere.The two major contributors are CH2Br2 and CHBr3.In this study, we investigate the global seasonal distribution of these two substances, based on four High Altitude and Long Range Research Aircraft (HALO) missions, the HIAPER Pole-to-Pole Observations (HIPPO) mission, and the Atmospheric Tomography (ATom) mission.Observations of CH2Br2 in the free and upper troposphere indicate a pronounced seasonality in both hemispheres, with slightly larger mixing ratios in the Northern Hemisphere (NH).Compared to CH2Br2, CHBr3 in these regions shows larger variability and less clear seasonality, presenting larger mixing ratios in winter and autumn in NH midlatitudes to high latitudes.The lowermost stratosphere of SH and NH shows a very similar distribution of CH2Br2 in hemispheric spring with differences well below 0.1 ppt, while the differences in hemispheric autumn are much larger with substantially smaller values in the SH than in the NH.This suggests that transport processes may be different in both hemispheric autumn seasons, which implies that the influx of tropospheric air (“flushing”) into the NH lowermost stratosphere is more efficient than in the SH.The observations of CHBr3 support the suggestion, with a steeper vertical gradient in the upper troposphere and lower stratosphere in SH autumn than in NH autumn.However, the SH database is insufficient to quantify this difference.We further compare the observations to model estimates of TOMCAT (Toulouse Off-line Model of Chemistry And Transport) and CAM-Chem (Community Atmosphere Model with Chemistry, version 4), both using the same emission inventory of Ordóñez et al. (2012).The pronounced tropospheric seasonality of CH2Br2 in the SH is not reproduced by the models,presumably due to erroneous seasonal emissions or atmospheric photochemical decomposition efficiencies.In contrast, model simulations of CHBr3 show a pronounced seasonality in both hemispheres, which is not confirmed by observations.The distributions of both species in the lowermost stratosphere of the Northern and Southern hemispheres are overall well captured by the models with the exception of southern hemispheric autumn,where both models present a bias that maximizes in the lowest 40 K above the tropopause, with considerably lower mixing ratios in the observations.Thus, both models reproduce equivalent flushing in both hemispheres, which is not confirmed by the limited available observations.Our study emphasizes the need for more extensive observations in the SH to fully understand the impact of CH2Br2 and CHBr3 on lowermost-stratospheric ozone loss and to help constrain emissions.

     
    more » « less
  5. Abstract. Global climate models (GCMs) have advanced in many ways ascomputing power has allowed more complexity and finer resolutions. As GCMsreach storm-resolving scales, they need to be able to produce realisticprecipitation intensity, duration, and frequency at fine scales withconsideration of scale-aware parameterization. This study uses astate-of-the-art storm-resolving GCM with a nonhydrostatic dynamical core – theModel for Prediction Across Scales (MPAS), incorporated in the atmosphericcomponent (Community Atmosphere Model, CAM) of the open-source CommunityEarth System Model (CESM), within the System for Integrated Modeling of theAtmosphere (SIMA) framework (referred to as SIMA-MPAS). At uniform coarse (here, at 120 km) gridresolution, the SIMA-MPAS configuration is comparable to the standardhydrostatic CESM (with a finite-volume (FV) dynamical core) with reasonableenergy and mass conservation on climatological timescales. With thecomparable energy and mass balance performance between CAM-FV (workhorse dynamical core) and SIMA-MPAS (newly developed dynamical core), it gives confidence inSIMA-MPAS's applications at a finer resolution. To evaluate this, we focuson how the SIMA-MPAS model performs when reaching a storm-resolving scale at3 km. To do this efficiently, we compose a case study using a SIMA-MPASvariable-resolution configuration with a refined mesh of 3 km covering thewestern USA and 60 km over the rest of the globe. We evaluated the modelperformance using satellite and station-based gridded observations withcomparison to a traditional regional climate model (WRF, the WeatherResearch and Forecasting model). Our results show realistic representationsof precipitation over the refined complex terrains temporally and spatially.Along with much improved near-surface temperature, realistic topography, andland–air interactions, we also demonstrate significantly enhanced snowpackdistributions. This work illustrates that the global SIMA-MPAS atstorm-resolving resolution can produce much more realistic regional climatevariability, fine-scale features, and extremes to advance both climate andweather studies. This next-generation storm-resolving model could ultimatelybridge large-scale forcing constraints and better inform climate impactsand weather predictions across scales. 
    more » « less