skip to main content


Title: Multiscale MHD‐Kinetic PIC Study of Energy Fluxes Caused by Reconnection
Abstract

We present an analysis of the energy partitioning in the magnetotail during a substorm at 03:58:00 UT on 7 February 2009. The analysis employs a multiscale approach where we use a state from a global magnetohydrodynamics (MHD) model to spawn a kinetic particle‐in‐cell (PIC) simulation of a large portion of the tail. We directly investigate the energy fluxes resulting from magnetic reconnection. The kinetic run provides information on the additional processes absent in the MHD description. The ion bulk energy and enthalpy fluxes carry the greatest energy, but the Poynting flux and electron enthalpy flux also carry a significant portion. The other fluxes (e.g., heat flux) are relatively small but are especially important because they allow us to identify the extra processes present only in the kinetic description. The energy fluxes present in the MHD approximation (Poynting flux, enthalpy flux, and bulk energy flux) are quantitatively accurate, and the kinetic correction does not greatly alter the MHD picture. However, there are two unique effects resulting from the kinetic physics. First, the formation of a rarefaction of the plasma flow into the reconnection site leads to a progressive decline in time of the particle energy fluxes with respect to the Poynting flux. Second, we observe that the instabilities developing in the kinetic reconnection outflows form structures absent from the MHD description. These structures reveal themselves as fluctuations within the energy fluxes. Especially notable are regions of inverted heat flux, where the heat flux is in the opposite direction to the total energy and mass flow.

 
more » « less
NSF-PAR ID:
10374793
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
3
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Using incoherent Thomson scattering, electron heating and acceleration at the electron velocity distribution function (EVDF) level are investigated during electron-only reconnection in the PHAse Space MApping (PHASMA) facility. Reconnection arises during the merger of two kink-free flux ropes. Both push and pull type reconnection occur in a single discharge. Electron heating is localized around the separatrix, and the electron temperature increases continuously along the separatrix with distance from the X-line. The local measured gain in enthalpy flux is up to 70% of the incoming Poynting flux. Notably, non-Maxwellian EVDFs comprised of a warm bulk population and a cold beam are directly measured during the electron-only reconnection. The electron beam velocity is comparable to, and scales with, electron Alfvén speed, revealing the signature of electron acceleration caused by electron-only reconnection. The observation of oppositely directed electron beams on either side of the X-point provides “smoking-gun” evidence of the occurrence of electron-only reconnection in PHASMA. 2D particle-in-cell simulations agree well with the laboratory measurements. The measured conversion of Poynting flux into electron enthalpy is consistent with recent observations of electron-only reconnection in the magnetosheath [Phan et al., Nature 557, 202 (2018)] at similar dimensionless parameters as in the experiments. The laboratory measurements go beyond the magnetosheath observations by directly resolving the electron temperature gain.

     
    more » « less
  2. Abstract

    Mercury possesses a miniature yet dynamic magnetosphere driven primarily by magnetic reconnection occurring regularly at the magnetopause and in the magnetotail. Using the newly developed Magnetohydrodynamics with Adaptively Embedded Particle‐in‐Cell (MHD‐AEPIC) model coupled with planetary interior, we have performed a series of global simulations with a range of upstream conditions to study in detail the kinetic signatures, asymmetries, and flux transfer events (FTEs) associated with Mercury's dayside magnetopause reconnection. By treating both ions and electrons kinetically, the embedded PIC model reveals crescent‐shaped phase‐space distributions near reconnection sites, counter‐streaming ion populations in the cusp region, and temperature anisotropies within FTEs. A novel metric and algorithm are developed to automatically identify reconnection X‐lines in our 3D simulations. The spatial distribution of reconnection sites as modeled by the PIC code exhibits notable dawn‐dusk asymmetries, likely due to such kinetic effects as X‐line spreading and Hall effects. Across all simulations, simulated FTEs occur quasi‐periodically every 4–9 s. The properties of simulated FTEs show clear dependencies on the upstream solar wind Alfvénic Mach number (MA) and the interplanetary magnetic field orientation, consistent with MESSENGER observations and previous Hall‐MHD simulations. FTEs formed in our MHD‐AEPIC model tend to carry a large amount of open flux, contributing ∼3%–36% of the total open flux generated at the dayside. Taken together, our MHD‐AEPIC simulations provide new insights into the kinetic processes associated with Mercury's magnetopause reconnection that should prove useful for interpreting spacecraft observations, such as those from MESSENGER and BepiColombo.

     
    more » « less
  3. Abstract

    Poynting flux is the flux of magnetic energy, which is responsible for chromospheric and coronal heating in the solar atmosphere. It is defined as a cross product of the electric and magnetic fields, and in ideal MHD conditions it can be expressed in terms of the magnetic field and plasma velocity. Poynting flux has been computed for active regions and plages, but estimating it in the quiet Sun (QS) remains challenging due to resolution effects and polarimetric noise. However, with the upcoming DKIST capabilities, such estimations will become more feasible than ever before. Here, we study QS Poynting flux in SUNRISE/IMaX observations and MURaM simulations. We explore two methods for inferring transverse velocities from observations—FLCT and a neural network–based method DeepVel—and show DeepVel to be the more suitable method in the context of small-scale QS flows. We investigate the effect of azimuthal ambiguity on Poynting flux estimates, and we describe a new method for azimuth disambiguation. Finally, we use two methods for obtaining the electric field. The first method relies on an idealized Ohm’s law, whereas the second is a state-of-the-art inductive electric field inversion method PDFI_SS. We compare the resulting Poynting flux values with theoretical estimates for chromospheric and coronal energy losses and find that some of the Poynting flux estimates are sufficient to match the losses. Using MURaM simulations, we show that photospheric Poynting fluxes vary significantly with optical depth, and that there is an observational bias that results in underestimated Poynting fluxes due to an unaccounted shear term contribution.

     
    more » « less
  4. Collisionless magnetic reconnection typically requires kinetic treatment that is, in general, computationally expensive compared to fluid-based models. In this study, we use the magnetohydrodynamics with an adaptively embedded particle-in-cell (MHD-AEPIC) model to study the interaction of two magnetic flux ropes. This innovative model embeds one or more adaptive PIC regions into a global MHD simulation domain such that the kinetic treatment is only applied in regions where the kinetic physics is prominent. We compare the simulation results among three cases: (1) MHD with adaptively embedded PIC regions, (2) MHD with statically (or fixed) embedded PIC regions, and (3) a full PIC simulation. The comparison yields good agreement when analyzing their reconnection rates and magnetic island separations as well as the ion pressure tensor elements and ion agyrotropy. In order to reach good agreement among the three cases, large adaptive PIC regions are needed within the MHD domain, which indicates that the magnetic island coalescence problem is highly kinetic in nature, where the coupling between the macro-scale MHD and micro-scale kinetic physics is important. 
    more » « less
  5. ABSTRACT

    We perform non-radiative two-dimensional particle-in-cell simulations of magnetic reconnection for various strengths of the guide field (perpendicular to the reversing field), in magnetically dominated electron–positron plasmas. Magnetic reconnection under such conditions could operate in accretion disc coronae around black holes. There, it has been suggested that the transrelativistic bulk motions of reconnection plasmoids containing inverse-Compton-cooled electrons could Compton-upscatter soft photons to produce the observed non-thermal hard X-rays. Our simulations are performed for magnetizations 3 ≤ σ ≤ 40 (defined as the ratio of enthalpy density of the reversing field to plasma enthalpy density) and guide field strengths 0 ≤ Bg/B0 ≤ 1 (normalized to the reversing field strength B0). We find that the mean bulk energy of the reconnected plasma depends only weakly on the flow magnetization but strongly on the guide field strength – with Bg/B0 = 1 yielding a mean bulk energy twice smaller than Bg/B0 = 0. Similarly, the dispersion of bulk motions around the mean – a signature of stochasticity in the plasmoid chain’s motions – is weakly dependent on magnetization (for σ ≳ 10) but strongly dependent on the guide field strength – dropping by more than a factor of two from Bg/B0 = 0 to Bg/B0 = 1. In short, reconnection in strong guide fields (Bg/B0 ∼ 1) leads to slower and more ordered plasmoid bulk motions than its weak guide field (Bg/B0 ∼ 0) counterpart.

     
    more » « less