skip to main content


Title: A Vector‐Based River Routing Model for Earth System Models: Parallelization and Global Applications
Abstract

A vector‐river network explicitly uses realistic geometries of river reaches and catchments for spatial discretization in a river model. This enables improving the accuracy of the physical properties of the modeled river system, compared to a gridded river network that has been used in Earth System Models. With a finer‐scale river network, resolving smaller‐scale river reaches, there is a need for efficient methods to route streamflow and its constituents throughout the river network. The purpose of this study is twofold: (1) develop a new method to decompose river networks into hydrologically independent tributary domains, where routing computations can be performed in parallel; and (2) perform global river routing simulations with two global river networks, with different scales, to examine the computational efficiency and the differences in discharge simulations at various temporal scales. The new parallelization method uses a hierarchical decomposition strategy, where each decomposed tributary is further decomposed into many sub‐tributary domains, enabling hybrid parallel computing. This parallelization scheme has excellent computational scaling for the global domain where it is straightforward to distribute computations across many independent river basins. However, parallel computing for a single large basin remains challenging. The global routing experiments show that the scale of the vector‐river network has less impact on the discharge simulations than the runoff input that is generated by the combination of land surface model and meteorological forcing. The scale of vector‐river networks needs to consider the scale of local hydrologic features such as lakes that are to be resolved in the network.

 
more » « less
PAR ID:
10374808
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
13
Issue:
6
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Stream confluences are ubiquitous interfaces in freshwater networks and serve as junctions of previously independent landscapes. However, few studies have investigated how confluences influence the transport, mixing, and fate of organic matter (OM) and inorganic nutrients at the scale of river networks. To understand how network biogeochemical fluxes may be altered by confluences, we conducted two sampling campaigns at five confluences in summer and fall 2021 spanning the extent of a mixed land use stream network. We sampled the confluence mainstem and tributary reaches as well as throughout the mixing zone downstream. We predicted that biologically reactive solutes would mix non‐conservatively downstream of confluences and that alterations to downstream biogeochemistry would be driven by differences in chemistry and size of the tributary and upstream reaches. In our study, confluences were geomorphically distinct (e.g., wider, deeper, unique erosional, and depositional features) downstream compared to reaches upstream of the confluence. Dissolved OM and nutrients mixed non‐conservatively downstream of the five confluences. Biogeochemical patterns downstream of confluences were only partially explained by contributing reach chemistry and drainage area. We found that the relationship between geomorphic variability, water residence time, and microbial respiration differed between reaches upstream and downstream of confluences. The lack of explanatory power from network‐scale drivers suggests that non‐conservative mixing downstream of confluences may be driven by biogeochemical processes within the confluence mixing zone. The unique geomorphology, non‐conservative biogeochemistry, and ubiquity of confluences highlights a need to account for the distinct functional role of confluences in water resource management in freshwater networks.

     
    more » « less
  2. Abstract

    River networks regulate carbon and nutrient exchange between continents, atmosphere, and oceans. However, contributions of riverine processing are poorly constrained at continental scales. Scaling relationships of cumulative biogeochemical function with watershed size (allometric scaling) provide an approach for quantifying the contributions of fluvial networks in the Earth system. Here we show that allometric scaling of cumulative riverine function with watershed area ranges from linear to superlinear, with scaling exponents constrained by network shape, hydrological conditions, and biogeochemical process rates. Allometric scaling is superlinear for processes that are largely independent of substrate concentration (e.g., gross primary production) due to superlinear scaling of river network surface area with watershed area. Allometric scaling for typically substrate-limited processes (e.g., denitrification) is linear in river networks with high biogeochemical activity or low river discharge but becomes increasingly superlinear under lower biogeochemical activity or high discharge, conditions that are widely prevalent in river networks. The frequent occurrence of superlinear scaling indicates that biogeochemical activity in large rivers contributes disproportionately to the function of river networks in the Earth system.

     
    more » « less
  3. This paper introduces a novel, parallel, and scalable implementation of the VF2 algorithm for subgraph monomorphism developed in the high-productivity language Chapel. Efficient graph analysis in large and complex network datasets is crucial across numerous scientific domains. We address this need through our enhanced VF2 implementation, widely utilized in subgraph matching, and integrating it into Arachne—a Python-accessible, open-source, large-scale graph analysis framework. Leveraging the parallel computing capabilities of modern hardware architectures, our implementation achieves significant performance improvements. Benchmarks on synthetic and real-world datasets, including social, communication, and neuroscience networks, demonstrate speedups of up to 97X on 128 cores, compared to existing Python-based tools like NetworkX and DotMotif, which do not exploit parallelization. Our results on large-scale graphs demonstrate scalability and efficiency, establishing it as a viable tool for subgraph monomorphism, the backbone of numerous graph analytics such as motif counting and enumeration. Arachne, including our VF2 implementation, can be found on GitHub: https://github.com/Bears-R-Us/arkouda-njit. 
    more » « less
  4. Abstract

    Projections of change in high‐flow extremes with global warming vary widely among, and within, large midlatitude river basins. The spatial variability of these changes is attributable to multiple causes. One possible and little‐studied cause of changes in high‐flow extremes is a change in the synchrony of mainstem and tributary streamflow during high‐flow extremes at the mainstem‐tributary confluence. We examined reconstructed and simulated naturalized daily streamflow at confluences on the Columbia River in western North America, quantifying changes in synchrony in future streamflow projections and estimating the impact of these changes on high‐flow extremes. In the Columbia River basin, projected flow regimes across colder tributaries initially diverge with warming as they respond to climate change at different rates, leading to a general decrease in synchrony, and lower high‐flow extremes, relative to a scenario with no changes in synchrony. Where future warming is sufficiently large to cause most subbasins upstream from a confluence to transition toward a rain‐dominated, warm regime, the decreasing trend in synchrony reverses itself. At one confluence with a major tributary (the Willamette River), where the mainstem and tributary flow regimes are initially very different, warming increases synchrony and, therefore, high‐flow magnitudes. These results may be generalizable to the class of large rivers with large contributions to flood risk from the snow (i.e., cold) regime, but that also receive considerable discharge from tributaries that drain warmer basins.

     
    more » « less
  5. Battery-powered computing solutions have grown in importance and utility across a wide range of applications in the technology industry, including both consumer and industrial uses. Devices that are not attached to a stable and constant power source must ensure that all power consumption is minimized while necessary computation and communications are performed. WiFi networking is ubiquitous in modern devices, and thus the power consumption necessary to transmit data is of utmost concern for these battery powered devices. The Ad hoc OnDemand Distance Vector (AODV) routing algorithm is a widely adopted and adapted routing system for path finding in wireless networks. AODV’s original implementation did not include power consumption as a consideration for route determinations. The Energy Aware AODV (EA-AODV) algorithm was an attempt to account for energy conservation by varying broadcast power and choosing paths with distance between nodes as a consideration in routing. Lightning Strike AODV (LS-AODV) described in this paper is a proposed routing algorithm that further accounts for energy consumption in wireless networking by balancing energy in a network. Quality of service is maintained while energy levels are increased through networks using the LS-AODV algorithm. 
    more » « less