skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Atlantic Water Boundary Current in the Chukchi Borderland and Southern Canada Basin
Abstract Synoptic shipboard measurements, together with historical hydrographic data and satellite data, are used to elucidate the detailed structure of the Atlantic Water (AW) boundary current system in the southern Canada Basin and its connection to the upstream source of AW in the Chukchi Borderland. Nine high‐resolution occupations of a transect extending from the Beaufort shelf to the deep basin near 152°W, taken between 2003 and 2018, reveal that there are two branches of the AW boundary current that flow beneath and counter to the Beaufort Gyre. Each branch corresponds to a warm temperature core and transports comparable amounts of Fram Strait Branch Water between roughly 200–700 m depth, although they are characterized by a different temperature/salinity (T/S) structure. The mean volume flux of the combined branches is 0.87 ± 0.13 Sv. Using the historical hydrographic data, the two branches are tracked upstream by their temperature cores andT/Ssignatures. This sheds new light on how the AW negotiates the Chukchi Borderland and why two branches emerge from this region. Lastly, the propagation of warm temperature anomalies through the region is quantified and shown to be consistent with the deduced circulation scheme.  more » « less
Award ID(s):
1756361
PAR ID:
10374811
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
125
Issue:
8
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The flow and transformation of warm, salty Atlantic‐origin water (AW) in the Arctic Ocean plays an important role in the global overturning circulation that helps regulate Earth's climate. The heat that it transports also impacts ice melt in different parts of the Arctic. This study uses data from a mooring array deployed across the shelf/slope of the Alaskan Beaufort Sea from 2002–2004 to investigate the flow of AW. A short‐lived “rebound jet” of AW on the upper continental slope regularly follows wind‐driven upwelling events. A total of 57 such events, lasting on average 3 days each, occurred over the 2 year period. As the easterly wind subsides, the rebound jet quickly spins up while the isopycnals continue to slump from their upwelled state. The strength of the jet is related to the cross‐slope isopycnal displacement, which in turn is dependent on the magnitude of the wind, in line with previous modeling. Seaward of the rebound jet, the offshore‐most mooring of the array measured the onshore branch of the AW boundary flowing eastward in the Canada Basin. However, the signature of the boundary current was only evident in the second year of the mooring timeseries. We suspect that this is due to the varying influence of the Beaufort Gyre in the two years, associated with a change in pattern of the wind stress curl that helps drive the gyre. 
    more » « less
  2. Abstract A regional coupled sea ice‐ocean model and mooring/shipboard measurements are used to investigate the origins, seasonality, and downstream fate of the Chukchi Slope Current (CSC). Three years (2013–2015) of model integration indicates that, in the mean, the model slope current transports ∼0.45 Sv of Pacific water northwestward along the Chukchi continental slope. Only 62% of this water emanates from Barrow Canyon, while the rest (38%) is fed by a westward jet extending from the southern Beaufort Sea. The jet merges with the outflow from the canyon, forming the CSC. Due to these two distinct origins, the slope current in the model has a double velocity core at times. This is consistent with the double‐core structure of the slope current seen in ship‐based observations. Seasonal changes in the volume, heat, and freshwater transports by the slope current appear to be related to the changes in the upstream flows. A tracer diagnostic in the model suggests that the part of the slope current over the upper continental slope continues westward toward the East Siberian Sea, while the portion of the current overlying deeper isobaths flows northward into the Chukchi Borderland, where it ultimately gets entrained into the Beaufort Gyre. Our study provides a detailed and complete picture of the slope current. 
    more » « less
  3. Abstract A high‐resolution regional ocean model together with moored hydrographic and velocity measurements is used to identify the pathways and mechanisms by which Pacific water, modified over the Chukchi shelf, crosses the shelf break into the Canada Basin. Most of the Pacific water flowing into the Arctic Ocean through Bering Strait enters the Canada Basin through Barrow Canyon. Strong advection allows the water to cross the shelf break and exit the shelf. Wind forcing plays little role in this process. Some of the outflowing water from Barrow Canyon flows to the east into the Beaufort Sea; however, approximately 0.4 to 0.5 Sv turns to the west forming the newly identified Chukchi Slope Current. This transport occurs at all times of year, channeling both summer and winter waters from the shelf to the Canada Basin. The model indicates that approximately 75% of this water was exposed to the mixed layer within the Chukchi Sea, while the remaining 25% was able to cross the shelf during the stratified summer before convection commences in late fall. We view the Sv of the Chukchi Slope Current as replacing Beaufort Gyre water that would have come from the east in the absence of the cross‐topography flow in Barrow Canyon. The weak eastward flow on the Beaufort slope is also consistent with the local disruption of the Beaufort Gyre by the Barrow Canyon outflow. 
    more » « less
  4. Abstract Data from two moorings deployed at 166°W on the northern Chukchi shelf and slope from summer 2002 to fall 2004, as part of the Western Arctic Shelf‐Basin Interactions program, are analyzed to investigate the characteristics and variability of the flow in this region. The depth‐mean velocity at the outer‐shelf mooring is northeastward and bottom‐intensified, while that at the upper‐slope mooring is northwestward and surface‐intensified. This, together with results from a high resolution ocean and sea ice reanalysis, indicates that the outer‐shelf mooring sampled the seaward edge of the Chukchi Shelfbreak Jet, while the upper‐slope mooring sampled the shoreward edge of the Chukchi Slope Current. The coupled variability in velocity at both sites is related to the wind stress curl over the Chukchi Sea shelf, likely via Ekman dynamics and geostrophic set up, analogous to the dynamics of both currents closer to Barrow Canyon near 157°W. Hydrographic signals are analyzed to elucidate the origin of the water masses present at this location. It is argued that the annual appearance of Pacific‐origin warm water at the outer‐shelf (upper‐slope) mooring in late‐fall and winter originates from Herald (Barrow) Canyon some months earlier. Our results constitute the first robust evidence that the westward‐flowing Chukchi Slope Current persists this far west of Barrow Canyon. 
    more » « less
  5. Abstract The warm-to-cold densification of Atlantic Water (AW) around the perimeter of the Nordic Seas is a critical component of the Atlantic Meridional Overturning Circulation (AMOC). However, it remains unclear how ongoing changes in air-sea heat flux impact this transformation. Here we use observational data, and a one-dimensional mixing model following the flow, to investigate the role of air-sea heat flux on the cooling of AW. We focus on the Norwegian Atlantic Slope Current (NwASC) and Front Current (NwAFC), where the primary transformation of AW occurs. We find that air-sea heat flux accounts almost entirely for the net cooling of AW along the NwAFC, while oceanic lateral heat transfer appears to dominate the temperature change along the NwASC. Such differing impacts of air-sea interaction, which explain the contrasting long-term changes in the net cooling along two AW branches since the 1990s, need to be considered when understanding the AMOC variability. 
    more » « less