skip to main content


Title: Freshwater Variability and Transport in the Labrador Sea From In Situ and Satellite Observations
Abstract

The Greenland ice sheet is melting at increasing rates. Changes in freshwater input to the Labrador Sea can influence coastal circulation and biological processes, stratification, and potentially winter convection. Many recent studies have investigated freshwater variability in the region based on model simulations or observations with limited spatial/temporal coverage. Here, we use in situ (1990–2019) and satellite (2011–2017) observations of surface salinity to characterize freshwater content and to identify transport pathways in the Labrador Sea over multiple years. Large freshening is observed in coastal waters off southwest Greenland from July to November. Interannual variability in freshening near the coast seems to be at least partially related to variability in meltwater input, although the sparseness of in situ data precludes a quantitative assessment. The seasonal westward transport of freshwater is enhanced between 60°–62°N and especially between 63°–64.8°N from August to October, with the low‐salinity waters circumnavigating the basin following the 1,000–2,000 m isobaths. That pathway coincides with intensifications in the component of the surface geostrophic flow that is directed offshore, highlighting the role played by the large‐scale circulation on the westward transport of the freshwater. Low‐salinity water can be transported toward the central Labrador Sea at synoptic scales, however, where it can potentially influence stratification. Consistent with previous modeling studies, offshore freshening is reduced in years with persistent downwelling‐favorable wind conditions. Despite limitations under cold water conditions, satellite observations of surface salinity compare well with in situ data suggesting that they can be useful for monitoring freshwater content in high latitudes.

 
more » « less
NSF-PAR ID:
10374864
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
126
Issue:
4
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Coastal waters off west Greenland are strongly influenced by the input of low salinity water from the Arctic and from meltwater from the Greenland Ice Sheet. Changes in freshwater content in the region can play an important role in stratification, circulation, and primary production; however, investigating salinity variability in the region is challenging because in situ observations are sparse. Here, we used satellite observations of sea surface salinity (SSS) from the Soil Moisture and Ocean Salinity mission produced by LOCEAN and by the Barcelona Expert Center (SMOS LOCEAN and SMOS BEC) and from the Soil Moisture Active Passive mission produced by the Jet Propulsion Laboratory (SMAP JPL) as well as by Remote Sensing Systems (SMAP RSS) to investigate how variability in a narrow coastal band off west Greenland is captured by these different products. Our analyses revealed that the various satellite SSS products capture the seasonal freshening off west Greenland from late spring to early fall. The magnitudes of the freshening and of coastal salinity gradients vary between the products however, being attenuated compared to historical in situ observations in most cases. The seasonal freshening off southwest Greenland is intensified in SMAP JPL and SMOS LOCEAN near the mouth of fjords characterized by large inputs of meltwater near the surface, which suggests an influence of meltwater from the Greenland Ice Sheet. Synoptic observations from 2012 following large ice sheet melting revealed good agreement with the spatial scale of freshening observed with in situ and SMOS LOCEAN data. Our analyses indicate that satellite SSS can capture the influence of meltwater input and associated freshwater plumes off coastal west Greenland, but those representations differ between products.

     
    more » « less
  2. Abstract

    The mechanisms that control the export of freshwater from the East Greenland Current, in both liquid and solid form, are explored using an idealized numerical model and scaling theory. A regional, coupled ocean–sea ice model is applied to a series of calculations in which key parameters are varied and the scaling theory is used to interpret the model results. The offshore ice flux, occurring in late winter, is driven primarily by internal stresses and is most sensitive to the thickness of sea ice on the shelf coming out of Fram Strait and the strength of alongshore winds over the shelf. The offshore liquid freshwater flux is achieved by eddy fluxes in late summer while there is an onshore liquid freshwater flux in winter due to the ice–ocean stress, resulting in only weak annual mean flux. The scaling theory identifies the key nondimensional parameters that control the behavior and reproduces the general parameter dependence found in the numerical model. Climate models predict that winds will increase and ice export from the Arctic will decrease in the future, both of which will lead to a decrease in the offshore flux of sea ice, while the influence on liquid freshwater may increase or decrease, depending on the relative changes in the onshore Ekman transport and offshore eddy fluxes. Additional processes that have not been considered here, such as more complex topography and synoptic wind events, may also contribute to cross-shelf exchange.

    Significance Statement

    The purpose of this study is to provide a basic understanding of what controls the flux of sea ice and low-salinity water from the East Greenland shelf into the interior of the Greenland and Iceland Seas. This is a potentially important process since it has been shown that sufficient freshening of the surface waters in the interior of the Nordic seas can inhibit deep convection and the associated air–sea heat flux and water mass transformation. A combination of idealized computer models and basic theory indicates that the fluxes of liquid and solid freshwater are controlled by different mechanisms and occur at different times of the year. Accurate representation in climate models will require representation of small-scale processes such as mesoscale eddies and gradients of ice thickness across the shelf.

     
    more » « less
  3. Abstract

    Coastal waters in the Labrador Sea are influenced by the seasonal input of meltwater from the Greenland ice sheet, which is predicted to more than double by the end of the century. Mechanisms controlling the offshore export of meltwater can have a significant effect on stratification and vertical stability in the Labrador Sea, being particularly important if the meltwater is transported toward the interior of the basin where winter convection occurs. Here we use a high‐resolution ocean model to show that coastal upwelling winds play a critical role transporting the meltwater offshore to about 150 km from the coast, where increased eddy activity and mean circulation can then transport the meltwater farther offshore. While meltwater discharged from West Greenland is either transported to Baffin Bay or circumnavigates the basin flowing mostly along isobaths, meltwater from East Greenland can reach the interior of the basin where it may influence stratification and winter convection whenever winds are anomalously upwelling favorable in late summer and early fall.

     
    more » « less
  4. Abstract

    Arctic‐origin and Greenland meltwaters circulate cyclonically in the boundary current system encircling the Labrador Sea. The ability of this freshwater to penetrate the interior basin has important consequences for dense water formation and the lower limb of the Atlantic Meridional Overturning Circulation. However, the precise mechanisms by which the freshwater is transported offshore, and the magnitude of this flux, remain uncertain. Here, we investigate wind‐driven upwelling northwest of Cape Farewell using 4 years of high‐resolution data from the Overturning in the Subpolar North Atlantic Program west Greenland mooring array, deployed from September 2014–2018, along with Argo, shipboard, and atmospheric reanalysis data. A total of 49 upwelling events were identified corresponding to enhanced northwesterly winds, followed by reduced along‐stream flow of the boundary current and anomalously dense water present on the outer shelf. The events occur during the development stage of forward Greenland tip jets. During the storms, a cross‐stream Ekman cell develops that transports freshwater offshore in the surface layer and warm, saline, Atlantic‐origin waters onshore at depth. The net fluxes of heat and freshwater for a representative storm are computed. Using a one‐dimensional mixing model, it is shown that the freshwater input resulting from the locus of winter storms could significantly limit the wintertime development of the mixed layer and hence the production of Labrador Sea Water in the southeastern part of the basin.

     
    more » « less
  5. Abstract Atmospheric rivers (ARs) result in precipitation over land and ocean. Rainfall on the ocean can generate a buoyant layer of freshwater that impacts exchanges between the surface and the mixed layer. These “fresh lenses” are important for weather and climate because they may impact the ocean stratification at all time scales. Here we use in situ ocean data, collocated with AR events, and a one-dimensional configuration of a general circulation model, to investigate the impact of AR precipitation on surface ocean salinity in the California Current System (CCS) on seasonal and event-based time scales. We find that at coastal and onshore locations the CCS freshens through the rainy season due to AR events, and years with higher AR activity are associated with a stronger freshening signal. On shorter time scales, model simulations suggest that events characteristic of CCS ARs can produce salinity changes that are detectable by ocean instruments (≥0.01 psu). Here, the surface salinity change depends linearly on rain rate and inversely on wind speed. Higher wind speeds ( U > 8 m s −1 ) induce mixing, distributing freshwater inputs to depths greater than 20 m. Lower wind speeds ( U ≤ 8 m s −1 ) allow freshwater lenses to remain at the surface. Results suggest that local precipitation is important in setting the freshwater seasonal cycle of the CCS and that the formation of freshwater lenses should be considered for identifying impacts of atmospheric variability on the upper ocean in the CCS on weather event time scales. Significance Statement Atmospheric rivers produce large amounts of rainfall. The purpose of this study is to understand how this rain impacts the surface ocean in the California Current System on seasonal and event time scales. Our results show that a greater precipitation over the rainy season leads to a larger decrease in salinity over time. On shorter time scales, these atmospheric river precipitation events commonly produce a surface salinity response that is detectable by ocean instruments. This salinity response depends on the amount of rainfall and the wind speed. In general, higher wind speeds will cause the freshwater input from rain to mix deeper, while lower wind speeds will have reduced mixing, allowing a layer of freshwater to persist at the surface. 
    more » « less