skip to main content

Title: Efficient Graphics Processing Unit Modeling of Street‐Scale Weather Effects in Support of Aerial Operations in the Urban Environment

Over the last few years, the concept of incorporating aerial vehicles into the urban environment for diverse purposes has attracted ample interest and investment. These purposes cover a broad spectrum of applications, from larger vehicles designed for passenger transport, to package delivery and inspection/surveillance missions performed by small unmanned drones. While these Advanced Air Mobility (AAM) operations have the potential to alleviate bottlenecks arising from saturated surface transportation networks, there are a number of challenges that need to be addressed to make these operations safe and viable. One challenge is predicting weather effects within the urban environment with the required level of spatiotemporal fidelity, which current operational weather models fail to provide due to the use of coarse grid spacings (a few kilometers) constrained by the predictive performance limitations of traditional computer architectures. Herein, we demonstrate how FastEddy®, a microscale model that exploits the accelerated nature of graphics processing units for high‐performance computing, can be used to understand and predict urban weather impacts from seasonal, day‐to‐day, diurnal, and sub‐hourly scales. To that end, we efficiently perform more than 50 telescoped simulations of microscale urban effects at street‐scale (5 m grid spacing) driven by realistic weather over a 20 km2region centered at the downtown area of Dallas, Texas. Our analyses demonstrate that urban‐weather interactions at the street‐scale are complex and tightly connected, which is of utmost relevance to AAM operations. These demonstrations reveal the capability of such models to provide real‐time weather hazard avoidance products tailored to capture microscale urban effects.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
AGU Advances
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Advanced air mobility (AAM) is an emerging sector in aviation aiming to offer secure, efficient, and eco-friendly transportation utilizing electric vertical takeoff and landing (eVTOL) aircraft. These vehicles are designed for short-haul flights, transporting passengers and cargo between urban centers, suburbs, and remote areas. As the number of flights is expected to rise significantly in congested metropolitan areas, there is a need for a digital ecosystem to support the AAM platform. This ecosystem requires seamless integration of air traffic management systems, ground control systems, and communication networks, enabling effective communication between AAM vehicles and ground systems to ensure safe and efficient operations. Consequently, the aviation industry is seeking to develop a new aerospace framework that promotes shared aerospace practices, ensuring the safety, sustainability, and efficiency of air traffic operations. However, the lack of adequate wireless coverage in congested cities and disconnected rural communities poses challenges for large-scale AAM deployments. In the immediate recovery phase, incorporating AAM with new air-to-ground connectivity presents difficulties such as overwhelming the terrestrial network with data requests, maintaining link reliability, and managing handover occurrences. Furthermore, managing eVTOL traffic in urban areas with congested airspace necessitates high levels of connectivity to support air routing information for eVTOL vehicles. This paper introduces a novel concept addressing future flight challenges and proposes a framework for integrating operations, infrastructure, connectivity, and ecosystems in future air mobility. Specifically, it includes a performance analysis to illustrate the impact of extensive AAM vehicle mobility on ground base station network infrastructure in urban environments. This work aims to pave the way for future air mobility by introducing a new vision for backbone infrastructure that supports safe and sustainable aviation through advanced communication technology.

    more » « less
  2. Abstract

    Appropriately characterizing future changes in regional-scale precipitation requires assessment of the interactive effect owing to greenhouse gas-induced climate change and the physical growth of the built environment. Here we use a suite of medium resolution (20 km grid spacing) decadal scale simulations conducted with the Weather Research and Forecasting model coupled to an urban canopy parameterization to examine the interplay between end-of-century long-lived greenhouse gas (LLGHG) forcing and urban expansion on continental US (CONUS) precipitation. Our results show that projected changes in extreme precipitation are at least one order of magnitude greater than projected changes in mean precipitation; this finding is geographically consistent over the seven CONUS National Climate Assessment (NCA) regions and between the pair of dynamically downscaled global climate model (GCM) forcings. We show that dynamical downscaling of the Geophysical Fluid Dynamics Laboratory GCM leads to projected end-of-century changes in extreme precipitation that are consistently greater compared to dynamical downscaling of the Community Earth System Model GCM for all regions except the Southeast NCA region. Our results demonstrate that the physical growth of the built environment can either enhance or suppress extreme precipitation across CONUS metropolitan regions. Incorporation of LLGHGs indicates compensating effects between urban environments and greenhouse gases, shifting the probability spectrum toward broad enhancement of extreme precipitation across future CONUS metropolitan areas. Our results emphasize the need for development of management policies that address flooding challenges exacerbated by the twin forcing agents of urban- and greenhouse gas-induced climate change.

    more » « less
  3. Abstract

    The Community Coordinated Modeling Center has been leading community‐wide space science and space weather model validation projects for many years. These efforts have been broadened and extended via the newly launched International Forum for Space Weather Modeling Capabilities Assessment ( Its objective is to track space weather models' progress and performance over time, a capability that is critically needed in space weather operations and different user communities in general. The Space Radiation and Plasma Effects Working Team of the aforementioned International Forum works on one of the many focused evaluation topics and deals with five different subtopics (‐all.php) and varieties of particle populations: Surface Charging from tens of eV to 50‐keV electrons and internal charging due to energetic electrons from hundreds keV to several MeVs. Single‐event effects from solar energetic particles and galactic cosmic rays (several MeV to TeV), total dose due to accumulation of doses from electrons (>100 keV) and protons (>1 MeV) in a broad energy range, and radiation effects from solar energetic particles and galactic cosmic rays at aviation altitudes. A unique aspect of the Space Radiation and Plasma Effects focus area is that it bridges the space environments, engineering, and user communities. The intent of the paper is to provide an overview of the current status and to suggest a guide for how to best validate space environment models for operational/engineering use, which includes selection of essential space environment and effect quantities and appropriate metrics.

    more » « less
  4. Abstract

    Precipitation forecasts, particularly at subseasonal-to-seasonal (S2S) time scale, are essential for informed and proactive water resource management. Although S2S precipitation forecasts have been evaluated, no systematic decomposition of the skill, Nash–Sutcliffe efficiency (NSE) coefficient, has been analyzed toward understanding the forecast accuracy. We decompose the NSE of S2S precipitation forecast into its three components—correlation, conditional bias, and unconditional bias—by four seasons, three lead times (1–12, 1–22, and 1–32 days), and three models, European Centre of Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction’s (NCEP) Climate Forecast System (CFS) model, and Environment and Climate Change Canada (ECCC), over the conterminous United States (CONUS). Application of a dry threshold, removal of grid cells with seasonal climatological precipitation means below 0.01 in. per day, is important as the NSE and correlations are lower across all seasons after masking areas with low precipitation values. Further, a west-to-east gradient in S2S forecast skill exists, and forecast skill was better during the winter months and for areas closer to the coast. Overall, ECMWF’s model performance was stronger than both ECCC and NCEP CFS’s performance, mainly for the forecasts issued during the fall and winter months. However, ECCC and NCEP CFS performed better for the forecast issued during the spring months and for areas further from the coast. Postprocessing using simple model output statistics could reduce both unconditional and conditional biases to zero, thereby offering better skill for regimes with high correlation. Our decomposition results show that efforts should focus on improving model parameterization and initialization schemes for climate regimes with low correlation.

    more » « less
  5. Abstract

    Solar power is mostly influenced by solar irradiation, weather conditions, solar array mismatches and partial shading conditions. Therefore, before installing solar arrays, it is necessary to simulate and determine the possible power generated. Maximum power point tracking is needed in order to make sure that, at any time, the maximum power will be extracted from the photovoltaic system. However, maximum power point tracking is not a suitable solution for mismatches and partial shading conditions. To overcome the drawbacks of maximum power point tracking due to mismatches and shadows, distributed maximum power point tracking is utilized in this paper. The solar farm can be distributed in different ways, including one DC–DC converter per group of modules or per module. In this paper, distributed maximum power point tracking per module is implemented, which has the highest efficiency. This technology is applied to electric vehicles (EVs) that can be charged with a Level 3 charging station in <1 hour. However, the problem is that charging an EV in <1 hour puts a lot of stress on the power grid, and there is not always enough peak power reserve in the existing power grid to charge EVs at that rate. Therefore, a Level 3 (fast DC) EV charging station using a solar farm by implementing distributed maximum power point tracking is utilized to address this issue. Finally, the simulation result is reported using MATLAB®, LTSPICE and the System Advisor Model. Simulation results show that the proposed 1-MW solar system will provide 5 MWh of power each day, which is enough to fully charge ~120 EVs each day. Additionally, the use of the proposed photovoltaic system benefits the environment by removing a huge amount of greenhouse gases and hazardous pollutants. For example, instead of supplying EVs with power from coal-fired power plants, 1989 pounds of CO2 will be eliminated from the air per hour.

    more » « less