skip to main content


Title: Integrating new sea‐level scenarios into coastal risk and adaptation assessments: An ongoing process
Abstract

The release of new and updated sea‐level rise (SLR) information, such as from the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports, needs to be better anticipated in coastal risk and adaptation assessments. This requires risk and adaptation assessments to be regularly reviewed and updated as needed, reflecting the new information but retaining useful information from earlier assessments. In this paper, updated guidance on the types of SLR information available is presented, including for sea‐level extremes. An intercomparison of the evolution of the headline projected ranges across all the IPCC reports show an increase from the fourth and fifth assessments to the most recent “Special Report on the Ocean and Cryosphere in a Changing Climate” assessment. IPCC reports have begun to highlight the importance of potential high‐end sea‐level response, mainly reflecting uncertainties in the Greenland/Antarctic ice sheet components, and how this might be considered in scenarios. The methods that are developed here are practical and consider coastal risk assessment, adaptation planning, and long‐term decision‐making to be an ongoing process and ensure that despite the large uncertainties, pragmatic adaptation decisions can be made. It is concluded that new sea‐level information should not be seen as an automatic reason for abandoning existing assessments, but as an opportunity to review (i) the assessment's robustness in the light of new science and (ii) the utility of proactive adaptation and planning strategies, especially over the more uncertain longer term.

This article is categorized under:

Assessing Impacts of Climate Change > Scenario Development and Application

 
more » « less
Award ID(s):
1854896 1929382
NSF-PAR ID:
10374937
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Climate Change
Volume:
12
Issue:
3
ISSN:
1757-7780
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sea level rise (SLR) is a long‐lasting consequence of climate change because global anthropogenic warming takes centuries to millennia to equilibrate for the deep ocean and ice sheets. SLR projections based on climate models support policy analysis, risk assessment and adaptation planning today, despite their large uncertainties. The central range of the SLR distribution is estimated by process‐based models. However, risk‐averse practitioners often require information about plausible future conditions that lie in the tails of the SLR distribution, which are poorly defined by existing models. Here, a community effort combining scientists and practitioners builds on a framework of discussing physical evidence to quantify high‐end global SLR for practitioners. The approach is complementary to the IPCC AR6 report and provides further physically plausible high‐end scenarios. High‐end estimates for the different SLR components are developed for two climate scenarios at two timescales. For global warming of +2°C in 2100 (RCP2.6/SSP1‐2.6) relative to pre‐industrial values our high‐end global SLR estimates are up to 0.9 m in 2100 and 2.5 m in 2300. Similarly, for a (RCP8.5/SSP5‐8.5), we estimate up to 1.6 m in 2100 and up to 10.4 m in 2300. The large and growing differences between the scenarios beyond 2100 emphasize the long‐term benefits of mitigation. However, even a modest 2°C warming may cause multi‐meter SLR on centennial time scales with profound consequences for coastal areas. Earlier high‐end assessments focused on instability mechanisms in Antarctica, while here we emphasize the importance of the timing of ice shelf collapse around Antarctica. This is highly uncertain due to low understanding of the driving processes. Hence both process understanding and emission scenario control high‐end SLR.

     
    more » « less
  2. Sea level rise (SLR) may impose substantial economic costs to coastal communities worldwide, but characterizing its global impact remains challenging because SLR costs depend heavily on natural characteristics and human investments at each location – including topography, the spatial distribution of assets, and local adaptation decisions. To date, several impact models have been developed to estimate the global costs of SLR. Yet, the limited availability of open-source and modular platforms that easily ingest up-to-date socioeconomic and physical data sources restricts the ability of existing systems to incorporate new insights transparently. In this paper, we present a modular, open-source platform designed to address this need, providing end-to-end transparency from global input data to a scalable least-cost optimization framework that estimates adaptation and net SLR costs for nearly 10 000 global coastline segments and administrative regions. Our approach accounts both for uncertainty in the magnitude of global mean sea level (g.m.s.l.) rise and spatial variability in local relative sea level rise. Using this platform, we evaluate costs across 230 possible socioeconomic and SLR trajectories in the 21st century. According to the latest Intergovernmental Panel on Climate Change Assessment Report (AR6), g.m.s.l. is likely to rise during the 21st century by 0.40–0.69 m if late-century warming reaches 2 ∘C and by 0.58–0.91 m with 4 ∘C of warming (Fox-Kemper et al., 2021). With no forward-looking adaptation, we estimate that annual costs of sea level rise associated with a 2 ∘C scenario will likely fall between USD 1.2 and 4.0 trillion (0.1 % and 1.2 % of GDP, respectively) by 2100, depending on socioeconomic and sea level rise trajectories. Cost-effective, proactive adaptation would provide substantial benefits, lowering these values to between USD 110 and USD 530 billion (0.02 and 0.06 %) under an optimal adaptation scenario. For the likely SLR trajectories associated with 4 ∘C warming, these costs range from USD 3.1 to 6.9 trillion (0.3 % and 2.0 %) with no forward-looking adaptation and USD 200 billion to USD 750 billion (0.04 % to 0.09 %) under optimal adaptation. The Intergovernmental Panel on Climate Change (IPCC) notes that deeply uncertain physical processes like marine ice cliff instability could drive substantially higher global sea level rise, potentially approaching 2.0 m by 2100 in very high emission scenarios. Accordingly, we also model the impacts of 1.5 and 2.0 m g.m.s.l. rises by 2100; the associated annual cost estimates range from USD 11.2 to 30.6 trillion (1.2 % and 7.6 %) under no forward-looking adaptation and USD 420 billion to 1.5 trillion (0.08 % to 0.20 %) under optimal adaptation. Our modeling platform used to generate these estimates is publicly available in an effort to spur research collaboration and support decision-making, with segment-level physical and socioeconomic input characteristics provided at https://doi.org/10.5281/zenodo.7693868 (Bolliger et al., 2023a) and model results at https://doi.org/10.5281/zenodo.7693869 (Bolliger et al., 2023b).

     
    more » « less
  3. Future sea-level change is characterized by both quantifiable and unquantifiable uncertainties. Effective communication of both types of uncertainty is a key challenge in translating sea-level science to inform long-term coastal planning. Scientific assessments play a key role in the translation process and have taken diverse approaches to communicating sea-level projection uncertainty. Here we review how past IPCC and regional assessments have presented sea-level projection uncertainty, how IPCC presentations have been interpreted by regional assessments and how regional assessments and policy guidance simplify projections for practical use. This information influenced the IPCC Sixth Assessment Report presentation of quantifiable and unquantifiable uncertainty, with the goal of preserving both elements as projections are adapted for regional application. 
    more » « less
  4. Abstract

    The exposure of populations to sea-level rise (SLR) is a leading indicator assessing the impact of future climate change on coastal regions. SLR exposes coastal populations to a spectrum of impacts with broad spatial and temporal heterogeneity, but exposure assessments often narrowly define the spatial zone of flooding. Here we show how choice of zone results in differential exposure estimates across space and time. Further, we apply a spatio-temporal flood-modeling approach that integrates across these spatial zones to assess the annual probability of population exposure. We apply our model to the coastal United States to demonstrate a more robust assessment of population exposure to flooding from SLR in any given year. Our results suggest that more explicit decisions regarding spatial zone (and associated temporal implication) will improve adaptation planning and policies by indicating the relative chance and magnitude of coastal populations to be affected by future SLR.

     
    more » « less
  5. Global sea level rise (SLR) may present the most urgent climate change adaptation challenge facing coastal communities today. The direction is clear, impacts are manifesting now, and the pace of rise is likely to accelerate. As a result, many coastal communities have begun planning their adaptation response and some are quite far along in the process. At the same time, evolving science provides new observations, models, and understanding of land-ocean dynamics that can increase clarity while also in many ways increase uncertainty about the scope, timing, and regional nature of SLR. The planning, design, and construction of water infrastructure has a relatively long timeline (up to 30 years), and thus the evolution of scientific knowledge presents challenges for communities already planning for SLR based on previous information. When does science become actionable for decision-makers? Are there characteristics or thresholds that could cause communities decide to move from one set of scenarios to another, or change approaches altogether? This talk focuses on two important studies different in kind but dominating the conversation about SLR adaptation planning today. First, DeConto and Pollard (2016) have suggested significantly higher upper end projections for Antarctic ice sheet melt, which increase both global and regional SLR above most previously assumed upper limits. Second, probabilistic projections using model output and expert elicitation as presented in Kopp et al (2014) are increasingly appearing in federal reports and planning-related documents. These two papers are pushing the boundaries of the science-to-planning interface, while the application of this work as actionable science is far from settled. This talk will present the outcome of recent conversations among our diverse author team. The authors are engaged in SLR planning related contexts from many angles and perspectives and include the aforementioned Kopp and DeConto as well as representatives of the City of San Francisco, Army Corps of Engineers, Environmental Protection Agency, and engineering consultant community. Attendees of this session will hear a presentation demonstrating co-production in process, including topics about which the authors have and have not agreed upon to date, with some attention to next steps in the process. 
    more » « less