skip to main content

Title: Ultrafast Kelvin Wave Variations in the Surface Magnetic Field

A suite of general circulation models is used to investigate the surface magnetic perturbations due to the ionospheric currents driven by an eastward‐propagating ultrafast Kelvin wave (UFKW) packet with periods between 2 and 4 days and zonal wave number. The simulated daytime UFKW‐driven meridional magnetic perturbations dBn (∼±5 nT) (or zonal currents) between about 5° and 20° magnetic latitude in each hemisphere are opposite in sign to those equatorward of±5° and produced by the equatorial electrojet (EEJ), with the directions on any given day determined by the phase of the UFKW as it propagates eastward with respect to the sunlit ionosphere. Since the nominal daytimeSqzonal current between∼±30° is uniformly eastward flowing, the present results are consistent with the hypothesis that the EEJ is part of a local current vortex with oppositely directed currents near the equator versus those between 5° and 20° at low latitudes. UFKWs are a special wave type wherein meridional winds are relatively small, which leads to our finding that the EEJ dBn constitutes a simple quantitative proxy forE‐region UFKW neutral winds near the 107‐km peak height of the Hall conductivity, including the variable wave period of the UFKW packet. Numerical experiments are also performed to understand the longitude distribution of actual ground magnetometer measurements that are needed to reliably extract the UFKW dBn signal and hence the neutral winds, both of which are closely linked to plasma drifts and electron densities in the equatorialFregion. Using actual magnetometer data it is moreover shown that the UFKW dBn signal is easily measurable. Therefore measurements of EEJ dBn can potentially be used to infer UFKW activity for scientific investigations focusing on coupling between the tropical troposphere and the ionosphere‐thermosphere.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Based on the observations from the balloon‐borne instrument High‐altitude Interferometer WIND experiment (HIWIND) and the simulations from the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM), the Grid Agnostic MHD Environment for Research Applications (GAMERA)‐TIEGCM (GT), and the GAMERA‐TIEGCM‐RCM (GTR), we investigate the variations of summer high‐latitude thermospheric winds and their physical mechanisms from 25 to 30 June, 2018. HIWIND observations show that the meridional winds were the largest at midnight and exhibited strong day‐to‐day variations during the 6‐day period, which were generally reproduced by those three models. The day‐to‐day variations of winds were mainly associated with the interplanetary magnetic field (IMF)perturbations, while the magnetic latitude variations also contributed to the large day‐to‐day variations of the winds seen in the observations. Meanwhile, the zonal winds were mostly westward during the daytime, and the wind speed became large, especially in the afternoon, which is related to the westward ion drift velocity. The observed meridional winds tend to turn equatorward during the daytime on some days, while the simulated winds blow mostly poleward except for simulations by the GTR model on 26 June. The GTR model revealed that the equatorward meridional winds on 26 June were associated with strong and negative IMFconditions, which tilts the convection pattern to the prenoon sector. The simulations also revealed that the ring current could contribute to affecting the neutral wind variations, especially under geomagnetically active conditions.

    more » « less
  2. Abstract

    In this work, we carry out a comprehensive modeling study, using the Thermosphere–Ionosphere–Electrodynamics General Circulation Model, to explore the physical processes by which the longitude‐dependent geomagnetic field drives the longitudinal variations of the sunrise enhancement of the zonal electric fields at the dip equator near the June solstice. Numerical experiments and diagnostic analyses of the electrodynamics equation show that the longitudinal differences of the equatorial zonal electric fields near sunrise are primarily associated with the longitudinal variations in the zonal wind dynamo, with those from the meridional wind dynamo contributing secondarily. Furthermore, the longitudinal differences of the wind dynamo near sunrise are mainly related to the longitudinal variations ofand conductance, which are caused primarily by the direct influence of the longitudinal structures of magnetic field declination and strength. Meanwhile, the longitudinal variations of neutral winds, which also result in moderatelongitudinal variations, play a secondary role in the longitudinal variations of the neutral wind dynamo, while plasma density, which has minor longitudinal differences near sunrise, contributes slightly by modifying the conductance. Overall, the sunrise enhancement in June is more significant at the longitudes where the magnetic field strength and distortion are larger or the magnetic field declination is smaller in the Northern Hemisphere.

    more » « less
  3. Abstract

    We provide evidence that midlatitude postsunrise traveling ionospheric disturbances (TIDs) are comprised of electrified waves with an eastward propagation component. The post‐sunrise gravity wave (GW) wind‐induced dynamo action effectively generated periodic meridional polarization electric fields (PEFs), facilitating TID zonal propagation in a similar fashion as GW‐driven neutral perturbations. A combination of near‐simultaneous eastward and upward observations using the Millstone Hill incoherent scatter radar along with 2‐dimensional total electron content maps allowed resolution of TID vertical and horizontal propagation as well as zonal ion drifts(meridional PEFs). In multiple observations,oscillated in the early morning during periods when TIDs exhibited downward phase progression, 30–60 min period,140 m/s eastward speed, and 70 km vertical wavelength. Inside these TIDs, multiple flow vortexes occurred in a vertical‐zonal plane spanning the ionospheric topside and bottomside. Subsequently, PEFs weakened after a few hours as TID horizontal wavefronts rotated clockwise.

    more » « less
  4. Abstract

    Numerical experiments are performed using a suite of general circulation models that enable the interaction between a Kelvin wave packet and the ionosphere‐thermosphere (IT) to be elucidated. Focus is on an eastward‐propagating ultra‐fast Kelvin wave (UFKW) packet with periods between 2 and 4 days and zonal wavenumbers=−1 during day of year (DOY) 266–281, 2009. Dissipative processes modify the classic UFKW dynamics (equatorially trapped, small meridional wind component) in three ways: (1) molecular diffusion acts to spread the UFKW zonal (u) and meridional (v) wind fields meridionally, pole to pole, asuandv, respectively, decay and grow with increasing height; (2) due to molecular diffusion, the UFKW spectrum at longer periods and with shorter vertical wavelengths preferentially dissipates with height; and (3) interaction with the diurnally varying IT introduces a westward‐propagatings=+2 component to the wind field that significantly modifies its longitude‐UT structure to include a diurnal modulation. The F‐region ionosphere also responds withs=+2, which originates from the influence of diurnally varying E‐region conductivity onE×Bdrifts. Additional spectral peaks invand ionospheric parameters arise due to longitude variations in the magnetic field. Maximum excursions in NmF2 (as compared with those from a simulation without UFKW forcing) achieve values as large as ±50% but more commonly occur in the range of ±20–30%. The combination of positive and negative responses, and their relative magnitudes, depends on the phasing of the UFKW as it moves zonally relative to the Sun‐synchronous diurnal variation of the ionosphere, in addition to its changing amplitude between DOY 266 and 282. Modifications of order 10 ms−1and −7% to zonal‐mean zonal winds and NmF2, respectively, also result from dissipation of the UFKW packet.

    more » « less
  5. Abstracts

    In this work, the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model is used to investigate the responses of ionospheric electrodynamic processes to the solar flares at the flare peaks and the underlying physical mechanisms on September 6 and 10, 2017. Simulations show that solar flares increased global daytime currents and reduced the eastward electric fields during the daytime from the equator to middle latitudes. Furthermore, westward equatorial electric fields and equatorial counter electrojets occurred in the early morning. At the flare peak, these electrodynamic responses are predominantly related to the enhanced E‐region conductivity by flares, as the responses of neutral winds and F‐region conductivity to flares are negligible. Specifically, the Cowling conductance enhancement is not the major process causing the reduction of zonal electric fields. This electric field reduction is primarily associated with the decrease of the ratio between the field line‐integrated wind‐driven currents and the conductance. The flare‐induced conductivity enhancement is larger but the background wind speed is smaller in the E‐region than in the F‐region, as a result, the increase of total integrated wind‐driven currents is less than the conductance enhancement.

    more » « less