skip to main content


Title: HASEL Artificial Muscles for a New Generation of Lifelike Robots—Recent Progress and Future Opportunities
Abstract

Future robots and intelligent systems will autonomously navigate in unstructured environments and closely collaborate with humans; integrated with our bodies and minds, they will allow us to surpass our physical limitations. Traditional robots are mostly built from rigid, metallic components and electromagnetic motors, which make them heavy, expensive, unsafe near people, and ill‐suited for unpredictable environments. By contrast, biological organisms make extensive use of soft materials and radically outperform robots in terms of dexterity, agility, and adaptability. Particularly, natural muscle—a masterpiece of evolution—has long inspired researchers to create “artificial muscles” in an attempt to replicate its versatility, seamless integration with sensing, and ability to self‐heal. To date, natural muscle remains unmatched in all‐round performance, but rapid advancements in soft robotics have brought viable alternatives closer than ever. Herein, the recent development of hydraulically amplified self‐healing electrostatic (HASEL) actuators, a new class of high‐performance, self‐sensing artificial muscles that couple electrostatic and hydraulic forces to achieve diverse modes of actuation, is discussed; current designs match or exceed natural muscle in many metrics. Research on materials, designs, fabrication, modeling, and control systems for HASEL actuators is detailed. In each area, research opportunities are identified, which together lays out a roadmap for actuators with drastically improved performance. With their unique versatility and wide potential for further improvement, HASEL actuators are poised to play an important role in a paradigm shift that fundamentally challenges the current limitations of robotic hardware toward future intelligent systems that replicate the vast capabilities of biological organisms.

 
more » « less
Award ID(s):
1830924 1739452
NSF-PAR ID:
10374955
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
33
Issue:
19
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    For soft robots to have ubiquitous adoption in practical applications they require soft actuators that provide well‐rounded actuation performance that parallels natural muscle while being inexpensive and easily fabricated. This manuscript introduces a toolkit to rapidly prototype, manufacture, test, and power various designs of hydraulically amplified self‐healing electrostatic (HASEL) actuators with muscle‐like performance that achieve all three basic modes of actuation (expansion, contraction, and rotation). This toolkit utilizes easy‐to‐implement methods, inexpensive fabrication tools, commodity materials, and off‐the‐shelf high‐voltage electronics thereby enabling a wide audience to explore HASEL technology. Remarkably, the actuators created from this easy‐to‐implement toolkit achieve linear strains exceeding 100%, a specific power greater than 150 W kg−1, and ≈20% strain at frequencies above 100 Hz. This combination of large strain, extreme speed, and high specific power yields soft actuators that jump without power‐amplifying mechanisms. Additionally, an efficient fabrication technique is introduced for modular designs of HASEL actuators, which is used to develop soft robotic devices driven by portable electronics. Inspired by the versatility of elephant trunks, the above capabilities are combined to create an untethered continuum robot for grasping and manipulating delicate objects, highlighting the wide potential of the introduced methods for soft robots with increasing sophistication.

     
    more » « less
  2. Soft robots require a complimentary control architecture to support their inherent compliance and versatility. This work presents a framework to control soft-robotic systems systematically and effectively. The data-driven model-based approach developed here makes use of Dynamic Mode Decomposition with control (DMDc) and standard controller synthesis techniques. These methods are implemented on a robotic arm driven by an antagonist pair of Hydraulically Amplified Self-Healing Electrostatic (HASEL) actuators. The results demonstrate excellent tracking performance and disturbance rejection, achieving a steady state error under 0.25% in response to step inputs and maintaining a reference orientation within 0.5 degrees during loading and unloading. The procedure presented in this work can be extended to develop effective and robust controllers for other soft-actuated systems without knowledge of their dynamics a priori. 
    more » « less
  3. Soft robotics represents a new set of technologies aimed at operating in natural environments and near the human body. To interact with their environment, soft robots require artificial muscles to actuate movement. These artificial muscles need to be as strong, fast, and robust as their natural counterparts. Dielectric elastomer actuators (DEAs) are promising soft transducers, but typically exhibit low output forces and low energy densities when used without rigid supports. Here, we report a soft composite DEA made of strain-stiffening elastomers and carbon nanotube electrodes, which demonstrates a peak energy density of 19.8 J/kg. The result is close to the upper limit for natural muscle (0.4–40 J/kg), making these DEAs the highest-performance electrically driven soft artificial muscles demonstrated to date. To obtain high forces and displacements, we used low-density, ultrathin carbon nanotube electrodes which can sustain applied electric fields upward of 100 V/μm without suffering from dielectric breakdown. Potential applications include prosthetics, surgical robots, and wearable devices, as well as soft robots capable of locomotion and manipulation in natural or human-centric environments.

     
    more » « less
  4. null (Ed.)
    Artificial muscles based on stimuli-responsive polymers usually exhibit mechanical compliance, versatility, and high power-to-weight ratio, showing great promise to potentially replace conventional rigid motors for next-generation soft robots, wearable electronics, and biomedical devices. In particular, thermomechanical liquid crystal elastomers (LCEs) constitute artificial muscle-like actuators that can be remotely triggered for large stroke, fast response, and highly repeatable actuations. Here, we introduce a digital light processing (DLP)–based additive manufacturing approach that automatically shear aligns mesogenic oligomers, layer-by-layer, to achieve high orientational order in the photocrosslinked structures; this ordering yields high specific work capacity (63 J kg −1 ) and energy density (0.18 MJ m −3 ). We demonstrate actuators composed of these DLP printed LCEs’ applications in soft robotics, such as reversible grasping, untethered crawling, and weightlifting. Furthermore, we present an LCE self-sensing system that exploits thermally induced optical transition as an intrinsic option toward feedback control. 
    more » « less
  5. Abstract

    Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open‐mesh shaped ultrathin deformable heaters, sensors of single‐crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon‐black‐doped liquid‐crystal elastomer (LCE‐CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE‐CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots.

     
    more » « less