skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Attribution of Land‐Use/Land‐Cover Change Induced Surface Temperature Anomaly: How Accurate Is the First‐Order Taylor Series Expansion?

Land surface temperature (LST) responds to land‐use/land‐cover change (LULCC), which modifies surface properties that control the surface energy balance (SEB). Quantifying changes in LST due to individual perturbations caused by LULCC is an attribution problem. Most attribution methods are based on the first‐order Taylor series expansion (FOTSE) of a linearized SEB equation. The accuracy of these methods is affected by the use of FOTSE at two places. The first is to linearize the SEB equation and to obtain an analytical solution for LST (the LST model), and the second is to obtain LST changes as the linear sum of concurrent changes in multiple factors (the attribution model). In this study, we systematically assess the importance of non‐linear effects lost in these linearization processes using the second‐order Taylor series expansion (SOTSE). Results show that while the SOTSE LST model outperforms the FOTSE LST model, the order of Taylor series expansion in the LST model does not significantly influence the attribution of LST changes. However, the SOTSE attribution model is considerably more accurate than the FOTSE attribution model, especially when the magnitude of perturbations is large. Results suggest that contributions from higher‐order and cross‐order terms in the attribution model can be as large as 50%. Sensitivity analysis further shows that non‐linear effects associated with changing surface resistance for LULCC scenarios with large perturbations (e.g., deforestation and urbanization) are particularly strong. In conclusion, we recommend using the FOTSE LST model and the SOTSE attribution model.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Land-use and land-cover change (LULCC) is one of the most important forcings affecting climate in the past century. This study evaluates the global and regional LULCC impacts in 1950–2015 by employing an annually updated LULCC map in a coupled land–atmosphere–ocean model. The difference between LULCC and control experiments shows an overall land surface temperature (LST) increase by 0.48 K in the LULCC regions and a widespread LST decrease by 0.18 K outside the LULCC regions. A decomposed temperature metric (DTM) is applied to quantify the relative contribution of surface processes to temperature changes. Furthermore, while precipitation in the LULCC areas is reduced in agreement with declined evaporation, LULCC causes a southward displacement of the intertropical convergence zone (ITCZ) with a narrowing by 0.5°, leading to a tripole anomalous precipitation pattern over the warm pool. The DTM shows that the temperature response in LULCC regions results from the competing effect between increased albedo (cooling) and reduced evaporation (warming). The reduced evaporation indicates less atmospheric latent heat release in convective processes and thus a drier and cooler troposphere, resulting in a reduction in surface cooling outside the LULCC regions. The southward shift of the ITCZ implies a northward cross-equatorial energy transport anomaly in response to reduced latent/sensible heat of the atmosphere in the Northern Hemisphere, where LULCC is more intensive. Tropospheric cooling results in the equatorward shift of the upper-tropospheric westerly jet in both hemispheres, which, in turn, leads to an equatorward narrowing of the Hadley circulation and ITCZ. 
    more » « less
  2. Abstract. Our work explores the impact of two important dimensions of landsystem changes, land use and land cover change (LULCC) as well as directagricultural reactive nitrogen (Nr) emissions from soils, on ozone(O3) and fine particulate matter (PM2.5) in terms of air quality overcontemporary (1992 to 2014) timescales. We account for LULCC andagricultural Nr emissions changes with consistent remote sensingproducts and new global emission inventories respectively estimating theirimpacts on global surface O3 and PM2.5 concentrations as well as Nrdeposition using the GEOS-Chem global chemical transport model. Over thistime period, our model results show that agricultural Nr emissionchanges cause a reduction of annual mean PM2.5 levels over Europe andnorthern Asia (up to −2.1 µg m−3) while increasing PM2.5 levels in India, China and the eastern US (up to +3.5 µg m−3). Land cover changes induce small reductions in PM2.5 (up to −0.7 µg m−3) over Amazonia, China and India due to reduced biogenic volatile organic compound (BVOC) emissions and enhanced deposition of aerosol precursor gases (e.g., NO2, SO2). Agricultural Nr emissionchanges only lead to minor changes (up to ±0.6 ppbv) in annual meansurface O3 levels, mainly over China, India and Myanmar. Meanwhile, ourmodel result suggests a stronger impact of LULCC on surface O3 over the time period across South America; the combination of changes in drydeposition and isoprene emissions results in −0.8 to +1.2 ppbv surfaceozone changes. The enhancement of dry deposition reduces the surface ozone level (up to −1 ppbv) over southern China, the eastern US and central Africa. The enhancement of soil NO emission due to crop expansion also contributes to surface ozone changes (up to +0.6 ppbv) over sub-Saharan Africa. Incertain regions, the combined effects of LULCC and agricultural Nr emission changes on O3 and PM2.5 air quality can be comparable (>20 %) to anthropogenic emission changes over the same time period. Finally, we calculate that the increase in global agricultural Nr emissions leads to a net increase in global land area (+3.67×106km2) that potentially faces exceedance of the critical Nr load (>5 kg N ha−1 yr−1). Our result demonstrates the impacts of contemporary LULCC and agricultural Nr emission changes on PM2.5 and O3 in terms of air quality, as well as the importanceof land system changes for air quality over multidecadal timescales. 
    more » « less
  3. null (Ed.)
    Abstract While the significance of quantifying the biophysical effects of deforestation is rarely disputed, the sensitivities of land surface temperature (LST) to deforestation-induced changes in different biophysical factors (e.g., albedo, aerodynamic resistance, and surface resistance) and the relative importance of those biophysical changes remain elusive. Based on the subgrid-scale outputs from two global Earth system models (ESMs, i.e., the Geophysical Fluid Dynamics Laboratory Earth System Model and the Community Earth System Model) and an improved attribution framework, the sensitivities and responses of LST to deforestation are examined. Both models show that changes in aerodynamic resistance are the most important factor responsible for LST changes, with other factors such as albedo and surface resistance playing secondary but important roles. However, the magnitude of the contributions from different biophysical factors to LST changes is quite different for the two ESMs. We find that the differences between the two models in terms of the sensitivities are smaller than those of the corresponding biophysical changes, indicating that the dissimilarity between the two models in terms of LST responses to deforestation is more related to the magnitude of biophysical changes. It is the first time that the attribution of subgrid surface temperature variability is comprehensively compared based on simulations with two commonly used global ESMs. This study yields new insights into the similarity and dissimilarity in terms of how the biophysical processes are represented in different ESMs and further improves our understanding of how deforestation impacts on the local surface climate. 
    more » « less
  4. Abstract

    The increase in wildfire risk in the United States in recent decades has been linked to rapid growth of the wildland‐urban interface and to changing climate. While there have been numerous studies on wildfires and climate change, few have separately assessed the impact of climate response to land‐use‐land‐cover change (LULCC) on wildfires. In this study, we analyse two 10‐year regional climate simulations driven by the current (2011) and future (2100) land‐use‐land‐cover patterns to assess modifications by the projected LULCC to the frequency and severity of fire‐prone atmospheric conditions described by two fire weather indices, the Canadian Forest Fire Weather Index and the Hot‐Dry‐Windy Index. The simulation corresponding to future land‐use‐land‐cover pattern yields higher surface temperature and vapour pressure deficit and lower precipitation compared to the simulation with the current pattern in areas where urbanized landscapes replace forests and grasslands, such as along the Piedmont and outside the Chicagoland region, while in areas where croplands replace forests, such as the southeast Coastal Plains, the results are reversed. These changes to local and regional atmospheric conditions lead to longer fire seasons and more extreme fire‐weather conditions in much of the eastern United States, specifically in the Southeast and Ohio River Valley where significant urban expansion is projected by the end of the century. Whereas in Southern California where some highly flammable shrublands will be replaced by urban or crop lands, fire‐prone atmospheric conditions are likely to be less frequent and less extreme in the future. However, much of California moves towards a year‐round fire season under the projected LULCC. The results suggest that by altering atmospheric conditions, LULCC may play an important role in determining fire regime, but the effects are highly heterogeneous and regionalized.

    more » « less
  5. Abstract In this study, we investigate the air temperature response to land-use and land-cover change (LULCC; cropland expansion and deforestation) using subgrid land model output generated by a set of CMIP6 model simulations. Our study is motivated by the fact that ongoing land-use activities are occurring at local scales, typically significantly smaller than the resolvable scale of a grid cell in Earth system models. It aims to explore the potential for a multimodel approach to better characterize LULCC local climatic effects. On an annual scale, the CMIP6 models are in general agreement that croplands are warmer than primary and secondary land (psl; mainly forests, grasslands, and bare ground) in the tropics and cooler in the mid–high latitudes, except for one model. The transition from warming to cooling occurs at approximately 40°N. Although the surface heating potential, which combines albedo and latent heat flux effects, can explain reasonably well the zonal mean latitudinal subgrid temperature variations between crop and psl tiles in the historical simulations, it does not provide a good prediction on subgrid temperature for other land tile configurations (crop vs forest; grass vs forest) under Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) forcing scenarios. A subset of simulations with the CESM2 model reveals that latitudinal subgrid temperature variation is positively related to variation in net surface shortwave radiation and negatively related to variation in the surface energy redistribution factor, with a dominant role from the latter south of 30°N. We suggest that this emergent relationship can be used to benchmark the performance of land surface parameterizations and for prediction of local temperature response to LULCC. 
    more » « less