Dong et al. (2020,
Long‐term efforts have sought to extend global model resolution to smaller scales enabling more accurate descriptions of gravity wave (GW) sources and responses, given their major roles in coupling and variability throughout the atmosphere. Such studies reveal significant improvements accompanying increasing resolution, but no guidance on what is sufficient to approximate reality. We take the opposite approach, using a finite‐volume model solving the Navier‐Stokes equations exactly. The reference simulation addresses mountain wave (MW) generation and responses over the Southern Andes described using isotropic 500 m, central resolution by Fritts et al. (2021),
- Award ID(s):
- 1647354
- NSF-PAR ID:
- 10374972
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 127
- Issue:
- 9
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract https://doi.org/10.1029/2019JD030691 ) employed a new compressible model to examine gravity wave (GW) self‐acceleration dynamics, instabilities, secondary gravity wave (SGW) generation, and mean forcing for GW packets localized in two dimensions (2D). This paper extends the exploration of self‐acceleration dynamics to a GW packet localized in three dimensions (3D) propagating into tidal winds in the mesosphere and thermosphere. As in the 2D packet responses, 3D GW self‐acceleration dynamics are found to be significant and include 3D GW phase distortions, stalled GW vertical propagation, local instabilities, and SGW and acoustic wave generation. Additional 3D responses described here include refraction by tidal winds, localized 3D instabilities, asymmetric SGW propagation, reduced SGW and acoustic wave responses at higher altitudes relative to 2D responses, and forcing of transient, large‐scale, 3D mean responses that may have implications for chemical and microphysical processes operating on longer time scales. -
Abstract A very high spatial resolution (
∼ 25 m pixel at 90 km altitude) OH airglow imager was installed at the Andes Lidar Observatory on Cerro Pachón, Chile, in February 2016. This instrument was collocated with a Na wind‐temperature lidar. On 1 March 2016, the lidar data showed that the atmosphere was dynamically unstable before 0100 UT and thus conducive to the formation of Kelvin‐Helmholtz instabilities (KHIs). The imager revealed the presence of a KHI and an apparent atmospheric gravity wave (AGW) propagating approximately perpendicular to the plane of primary KHI motions. The AGW appears to have induced modulations of the shear layer leading to misalignments of the emerging KHI billows. These enabled strong KHI billow interactions, as they achieved large amplitudes and a rapid transition to turbulence thereafter. The interactions manifested themselves as vortex tube and knot features that were earlier identified in laboratory studies, as discussed in Thorpe (1987,https://doi.org/10.1029/JC092iC05p05231 ; 2002,https://doi.org/10.1002/qj.200212858307 ) and inferred to be widespread in the atmosphere based on features seen in tropospheric clouds but which have never been identified in previous upper atmospheric observations. This study presents the first high‐resolution airglow imaging observation of these KHI interaction dynamics that drive rapid transitions to turbulence and suggest the potential importance of these dynamics in the mesosphere and at other altitudes. A companion paper (Fritts et al., 2020,https://doi.org/10.1029/2020JD033412 ) modeling these dynamics confirms that the vortex tubes and knots yield more rapid and significantly enhanced turbulence relative to the internal instabilities of individual KHI billows. -
Abstract Atomic oxygen (O) in the mesosphere and lower thermosphere (MLT) results from a balance between production via photo‐dissociation in the lower thermosphere and chemical loss by recombination in the upper mesosphere. The transport of O downward from the lower thermosphere into the mesosphere is preferentially driven by the eddy diffusion process that results from dissipating gravity waves and instabilities. The motivation here is to probe the intra‐annual variability of the eddy diffusion coefficient (k
zz ) and eddy velocity in the MLT based on the climatology of the region, initially accomplished by Garcia and Solomon (1985,https://doi.org/10.1029/JD090iD02p03850 ). In the current study, the intra‐annual cycle was divided into 26 two‐week periods for each of three zones: the northern hemisphere (NH), southern hemisphere (SH), and equatorial (EQ). Both 16 years of SABER (2002–2018) and 10 years of SCIAMACHY (2002–2012) O density measurements, along with NRLMSIS®2.0 were used for calculation of atomic oxygen eddy diffusion velocities and fluxes. Our prominent findings include a dominant annual oscillation below 87 km in the NH and SH zones, with a factor of 3–4 variation between winter and summer at 83 km, and a dominant semiannual oscillation at all altitudes in the EQ zone. The measured global average kzz at 96 km lacks the intra‐annual variability of upper atmosphere density data deduced by Qian et al. (2009,https://doi.org/10.1029/2008JA013643 ). The very large seasonal (and hemispherical) variations in kzz and O densities are important to separate and isolate in satellite analysis and to incorporate in MLT models. -
Abstract A remarkable, large‐amplitude, mountain wave (MW) breaking event was observed on the night of 21 June 2014 by ground‐based optical instruments operated on the New Zealand South Island during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Concurrent measurements of the MW structures, amplitudes, and background environment were made using an Advanced Mesospheric Temperature Mapper, a Rayleigh Lidar, an All‐Sky Imager, and a Fabry‐Perot Interferometer. The MW event was observed primarily in the OH airglow emission layer at an altitude of ~82 km, over an ~2‐hr interval (~10:30–12:30 UT), during strong eastward winds at the OH altitude and above, which weakened with time. The MWs displayed dominant horizontal wavelengths ranging from ~40 to 70 km and temperature perturbation amplitudes as large as ~35 K. The waves were characterized by an unusual, “saw‐tooth” pattern in the larger‐scale temperature field exhibiting narrow cold phases separating much broader warm phases with increasing temperatures toward the east, indicative of strong overturning and instability development. Estimates of the momentum fluxes during this event revealed a distinct periodicity (~25 min) with three well‐defined peaks ranging from ~600 to 800 m2/s2, among the largest ever inferred at these altitudes. These results suggest that MW forcing at small horizontal scales (<100 km) can play large roles in the momentum budget of the mesopause region when forcing and propagation conditions allow them to reach mesospheric altitudes with large amplitudes. A detailed analysis of the instability dynamics accompanying this breaking MW event is presented in a companion paper, Fritts et al. (2019,
https://doi.org/10.1029/2019jd030899 ). -
Abstract We present modeling results of tube and knot (T&K) dynamics accompanying thermospheric Kelvin Helmholtz Instabilities (KHI) in an event captured by the 2018 Super Soaker campaign (R. L. Mesquita et al., 2020,
https://doi.org/10.1029/2020JA027972 ). Chemical tracers released by a rocketsonde on 26 January 2018 showed coherent KHI in the lower thermosphere that rapidly deteriorated within 45–90 s. Using wind and temperature data from the event, we conducted high resolution direct numerical simulations (DNS) employing both wide and narrow spanwise domains to facilitate (wide domain case) and prohibit (narrow domain case) the axial deformation of KH billows that allows tubes and knots to form. KHI T&K dynamics are shown to produce accelerated instability evolution consistent with the observations, achieving peak dissipation rates nearly two times larger and 1.8 buoyancy periods faster than axially uniform KHI generated by the same initial conditions. Rapidly evolving twist waves are revealed to drive the transition to turbulence; their evolution precludes the formation of secondary convective instabilities and secondary KHI seen to dominate the turbulence evolution in artificially constrained laboratory and simulation environments. T&K dynamics extract more kinetic energy from the background environment and yield greater irreversible energy exchange and entropy production, yet they do so with weaker mixing efficiency due to greater energy dissipation. The results suggest that enhanced mixing from thermospheric KHI T&K events could account for the discrepancy between modeled and observed mixing in the lower thermosphere (Garcia et al., 2014,https://doi.org/10.1002/2013JD021208 ; Liu, 2021,https://doi.org/10.1029/2020GL091474 ) and merits further study.