skip to main content


Title: Sensitivity of Upper Atmosphere to Different Characteristics of Flow Bursts in the Auroral Zone
Abstract

Meso‐scale plasma convection and particle precipitation could be significant momentum and energy sources for the ionosphere‐thermosphere (I‐T) system. Following our previous work on the I‐T response to a typical midnight flow burst, flow bursts with different characteristics (lifetime, size, and speed) have been examined systematically with Global Ionosphere‐Thermosphere Model (GITM) simulations in this study. Differences between simulations with and without additional flow bursts are used to illustrate the impact of flow bursts on the I‐T system. The neutral density perturbation due to a flow burst increases with the lifetime, size, and flow speed of the flow burst. It was found that the neutral density perturbation is most sensitive to the size of a flow burst, increasing from ∼0.3% to ∼1.3% when the size changes from 80 to 200 km. A westward‐eastward asymmetry has been identified in neutral density, wind, and temperature perturbations, which may be due to the changing of the forcing location in geographic coordinates and the asymmetrical background state of the I‐T system. In addition to midnight flow bursts, simulations with flow bursts centered at noon, dawn, and dusk have also been carried out. A flow burst centered at noon (12.0 Local Time [LT], 73°N) produces the weakest perturbation, and a flow burst centered at dusk (18.0 LT, 71°N) produces the strongest. Single‐cell and two‐cell flow bursts induce very similar neutral density perturbation patterns.

 
more » « less
Award ID(s):
1907698 2100975
NSF-PAR ID:
10374977
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
126
Issue:
10
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The occurrence of St. Patrick's Day (17 March) geomagnetic storms during two different years (2013 and 2015) with similar solar flux levels but varying storm intensity provided an opportunity to compare and contrast the responses of the ionosphere‐thermosphere (IT) system to different levels of geomagnetic activity. The evolution of positive ionospheric storms at the southern polar stations Bharati (76.6°S MLAT) and Davis (76.2°S MLAT) and its causative connection to the solar wind driving mechanisms during these storms has been investigated in this paper. During the main phase of both the storms, significant enhancements in TEC and phase scintillation were observed in the magnetic noon/ midnight period at Bharati and Davis. The TEC in the midnight sector on 17 March 2015 was significantly higher compared to that on 17 March 2013, in line with the storm intensity. The TEC enhancements during both the storm events are associated with the formation of the storm‐enhanced densities (SEDs)/tongue of ionization (TOI). The strong and sustained magnetopause erosion led to the prevalence of stronger storm time electric fields (prompt penetration electric field (PPEF)/subauroral polarization streams (SAPS)) for long duration on 17 March 2015. This combined with the action of neutral winds at midlatitudes favored the formation of higher plasma densities in the regions of SED formation on this day. The same was weaker during the 17 March 2013 storm due to the fast fluctuating nature of interplanetary magnetic field (IMF)Bz. This study shows that the duration and extent of magnetopause erosion play an important role in the spatiotemporal evolution of the plasma density distribution in the high‐midlatitude ionosphere.

     
    more » « less
  2. Abstract

    We present the observational and modeling study focused on the major factors determining the spatiotemporal structure of the high‐latitude ionospheric plasma density enhancement—the tongue of ionization (TOI) structure—during the 2015 St. Patrick's Day geomagnetic storm. We use the Global Self‐consistent Model of the Thermosphere, Ionosphere, Protonosphere (GSM TIP) to reproduce the plasma density distribution, and the results are compared with the observational data as deduced from the ground‐based global positioning system total electron content and in situ plasma probe measurements at different altitudes. Both the simulation and observation results show that a large‐scale TOI‐like structure of enhanced plasma density extends from the dayside midlatitude region toward the central polar cap along the antisunward cross‐polar convection flow. We reveal an important role of the clockwise convection cell rotation for the modification of TOI structure. According to model results during the storm main phase, the neutral thermospheric composition, particularly the “tongue” in n(N2), modifies the spatial structure of TOI in such a way that (1) the near‐pole region of enhanced plasma density is shifted to the duskside and, (2) atFregion heights, the TOI is split into the dusk and dawn branches. The signature of TOI in the topside ionosphere considerably differs from that in theFregion because of a lesser influence of the neutral composition changes at higher altitudes. Model results revealed that at plasmaspheric heights, the TOI structure appears in both the dawn and dusk convection cells.

     
    more » « less
  3. Abstract

    Intense sunward (westward) plasma flows, named Subauroral Polarization Stream (SAPS), have been known to occur equatorward of the electron auroras for decades, yet their effect on the upper thermosphere has not been well understood. On the one hand, the large velocity of SAPS results in large momentum exchange upon each ion‐neutral collision. On the other hand, the low plasma density associated with SAPS implies a low ion‐neutral collision frequency. We investigate the SAPS effect during non‐storm time by utilizing a Scanning Doppler Imager (SDI) for monitoring the upper thermosphere, SuperDARN radars for SAPS, all‐sky imagers and DMSP Spectrographic Imager for the auroral oval, and GPS receivers for the total electron content. Our observations suggest that SAPS at times drives substantial (>50 m/s) westward winds at subauroral latitudes in the dusk‐midnight sector, but not always. The occurrence of the westward winds varies withAEindex, plasma content in the trough, and local time. The latitudinally averaged wind speed varies from 60 to 160 m/s, and is statistically 21% of the plasma. These westward winds also shift to lower latitude with increasingAEand increasing MLT. We do not observe SAPS driving poleward wind surges, neutral temperature enhancements, or acoustic‐gravity waves, likely due to the somewhat weak forcing of SAPS during the non‐storm time.

     
    more » « less
  4. Abstract

    On 11 June 2017, a sudden solar wind dynamic pressure decrease occurred at 1437 UT according to the OMNI solar wind data. The solar wind velocity did not change significantly, while the density dropped from 42 to 10 cm−3in a minute. The interplanetary magnetic fieldBZwas weakly northward during the event, while theBYchanged from positive to negative. Using the University of Michigan Block Adaptive Tree Solarwind Roe Upwind Scheme global magnetohydrodynamic code, the global responses to the decrease in the solar wind dynamic pressure were studied. The simulation revealed that the magnetospheric expansion consisted of two phases similar to the responses during magnetospheric compression, namely, a negative preliminary impulse and a negative main impulse phase. The simulated plasma flow and magnetic fields reasonably reproduced the Time History of Events and Macroscale Interactions during Substorms and Magnetospheric Multiscale spacecraft in situ observations. Two separate pairs of dawn‐dusk vortices formed during the expansion of the magnetosphere, leading to two separate pairs of field‐aligned current cells. The effects of the flow and auroral precipitation on the ionosphere‐thermosphere (I‐T) system were investigated using the Global Ionosphere Thermosphere Model driven by simulated ionospheric electrodynamics. The perturbations in the convection electric fields caused enhancements in the ion and electron temperatures. This study shows that, like the well‐studied sudden solar wind pressure increases, sudden pressure decreases can have large impacts in the coupled I‐T system. In addition, the responses of the I‐T system depend on the initial convection flows and field‐aligned current profiles before the solar wind pressure perturbations.

     
    more » « less
  5. Abstract

    During magnetospheric substorms, high‐latitude ionospheric plasma convection is known to change dramatically. How upper thermospheric winds change, however, has not been well understood, and conflicting conclusions have been reported. Here, we study the effect of substorms on high‐latitude upper thermospheric winds by taking advantage of a chain of scanning Doppler imagers (SDIs), THEMIS all‐sky imagers (ASIs), and the Poker Flat incoherent scatter radar (PFISR). SDIs provide mosaics of wind dynamics in response to substorms in two dimensions in space and as a function of time, while ASIs and PFISR concurrently monitor auroral emissions and ionospheric parameters. During the substorm growth phase, the classical two‐cell global circulation of neutral winds intensifies. After substorm onset, the zonal component of these winds is strongly suppressed in the midnight sector, whereas away from the midnight sector two‐cell circulation of winds is enhanced. Both pre and postonset enhancements are ≥100 m/s above the quiet‐time value, and postonset enhancement occurs over a broader latitude and local‐time area than preonset enhancement. The meridional wind component in the midnight and postmidnight sectors is accelerated southward to subauroral latitudes. Our findings suggest that substorms significantly modify the upper‐thermospheric wind circulation by changing the wind direction and speed and therefore are important for the entire magnetosphere‐ionosphere‐thermosphere system.

     
    more » « less