skip to main content


Title: PMC Turbo: Studying Gravity Wave and Instability Dynamics in the Summer Mesosphere Using Polar Mesospheric Cloud Imaging and Profiling From a Stratospheric Balloon
Abstract

The Polar Mesospheric Cloud Turbulence (PMC Turbo) experiment was designed to observe and quantify the dynamics of small‐scale gravity waves (GWs) and instabilities leading to turbulence in the upper mesosphere during polar summer using instruments aboard a stratospheric balloon. The PMC Turbo scientific payload comprised seven high‐resolution cameras and a Rayleigh lidar. Overlapping wide and narrow camera field of views from the balloon altitude of ~38 km enabled resolution of features extending from ~20 m to ~100 km at the PMC layer altitude of ~82 km. The Rayleigh lidar provided profiles of temperature below the PMC altitudes and of the PMCs throughout the flight. PMCs were imaged during an ~5.9‐day flight from Esrange, Sweden, to Northern Canada in July 2018. These data reveal sensitivity of the PMCs and the dynamics driving their structure and variability to tropospheric weather and larger‐scale GWs and tides at the PMC altitudes. Initial results reveal strong modulation of PMC presence and brightness by larger‐scale waves, significant variability in the occurrence of GWs and instability dynamics on time scales of hours, and a diversity of small‐scale dynamics leading to instabilities and turbulence at smaller scales. At multiple times, the overall field of view was dominated by extensive and nearly continuous GWs and instabilities at horizontal scales from ~2 to 100 km, suggesting sustained turbulence generation and persistence. At other times, GWs were less pronounced and instabilities were localized and/or weaker, but not absent. An overview of the PMC Turbo experiment motivations, scientific goals, and initial results is presented here.

 
more » « less
NSF-PAR ID:
10374990
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
124
Issue:
12
ISSN:
2169-897X
Page Range / eLocation ID:
p. 6423-6443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Polar Mesospheric Cloud (PMC) Turbulence experiment performed optical imaging and Rayleigh lidar PMC profiling during a 6‐day flight in July 2018. A mosaic of seven imagers provided sensitivity to spatial scales from ∼20 m to 100 km at a ∼2‐s cadence. Lidar backscatter measurements provided PMC brightness profiles and enabled definition of vertical displacements of larger‐scale gravity waves (GWs) and smaller‐scale instabilities of various types. These measurements captured an interval of strong, widespread Kelvin‐Helmholtz instabilities (KHI) occurring over northeastern Canada on July 12, 2018 during a period of significant GW activity. This paper addresses the evolution of the KHI field and the characteristics and roles of secondary instabilities within the KHI. Results include the imaging of secondary KHI in the middle atmosphere and multiple examples of KHI “tube and knot” (T&K) dynamics where two or more KH billows interact. Such dynamics have been identified clearly only once in the atmosphere previously. Results reveal that KHI T&K arise earlier and evolve more quickly than secondary instabilities of uniform KH billows. A companion paper by Fritts et al. (2022),https://doi.org/10.1029/2021JD035834reveals that they also induce significantly larger energy dissipation rates than secondary instabilities of individual KH billows. The expected widespread occurrence of KHI T&K events may have important implications for enhanced turbulence and mixing influencing atmospheric structure and variability.

     
    more » « less
  2. Abstract

    Kjellstrand et al. (2022),https://10.1029/2021JD036232describes the evolution and dynamics of a strong, large‐scale Kelvin‐Helmholtz instability (KHI) event observed in polar mesospheric clouds (PMCs) on 12 July 2018 by high‐resolution imagers aboard the PMC Turbulence (PMC Turbo) stratospheric long‐duration balloon experiment. The imaging provides evidence of KH billow interactions and instabilities that are strongly influenced by gravity waves at larger scales. Specific features include initially separated regions of KHI, secondary convective and KH instabilities of individual billows, and “tubes” and “knots” that arise where billow cores are mis‐aligned or discontinuous along their axes. This study describes a direct numerical simulation of KH billow interactions in a periodic domain seeded with random initial noise that enables excitation of multiple KH billows exhibiting variable phase structures that capture multiple features of the observed KHI dynamics. Variable KH billow phases along their axes yield initial vortex tubes having diagonal alignments that link adjacent, but mis‐aligned, billow cores. Weak initial vortex tubes and billow cores having nearly orthogonal alignments amplify, interact strongly, and drive intense vortex knots at these sites. These vortex tube and knot (T&K) dynamics excite “twist waves” that unravel the initial vortex tubes, and drive increasingly strong vortex interactions and a cascade of energy and enstrophy to successively smaller scales in the turbulence inertial range. The implications of T&K dynamics are much more rapid and intense breakdown and decay of the KH billows, and significantly enhanced energy dissipation rates, where these interactions occur.

     
    more » « less
  3. Abstract

    A gravity wave (GW) model that includes influences of temperature variations and large‐scale advection on polar mesospheric cloud (PMC) brightness having variable dependence on particle radius is developed. This Complex Geometry Compressible Atmosphere Model for PMCs (CGCAM‐PMC) is described and applied here for three‐dimensional (3‐D) GW packets undergoing self‐acceleration (SA) dynamics, breaking, momentum deposition, and secondary GW (SGW) generation below and at PMC altitudes. Results reveal that GW packets exhibiting strong SA and instability dynamics can induce significant PMC advection and large‐scale transport, and cause partial or total PMC sublimation. Responses modeled include PMC signatures of GW propagation and SA dynamics, “voids” having diameters of ∼500–1,200 km, and “fronts” with horizontal extents of ∼400–800 km. A number of these features closely resemble PMC imaging by the Cloud Imaging and Particle Size (CIPS) instrument aboard the Aeronomy of Ice in the Mesosphere (AIM) satellite. Specifically, initial CGCAM‐PMC results closely approximate various CIPS images of large voids surrounded by smaller void(s) for which dynamical explanations have not been offered to date. In these cases, the GW and instabilities dynamics of the initial GW packet are responsible for formation of the large void. The smaller void(s) at the trailing edge of a large void is (are) linked to the lower‐ or higher‐altitude SGW generation and primary mean‐flow forcing. We expect an important benefit of such modeling to be the ability to infer local forcing of the mesosphere and lower thermosphere (MLT) over significant depths when CGCAM‐PMC modeling is able to reasonably replicate PMC responses.

     
    more » « less
  4. Abstract

    A very high‐spatial resolution (∼21–23 m pixel at 85 km altitude) OH airglow imager at the Andes Lidar Observatory at Cerro Pachón, Chile observed considerable ducted wave activity on the night of 29–30 October 2016. This instrument was collocated with a Na wind‐temperature lidar that provided data revealing the occurrence of strong ducts. A large field of view OH and greenline airglow imager showed waves present over a vertical extent consistent with the altitudes of the ducting features identified in the lidar profiles. While waves that appeared to be ducted were seen in all imagers throughout the observation interval, the wave train seen in the OH images at earlier times had a distinct leading nonsinusoidal phase followed by several, lower‐amplitude, more sinusoidal phases, suggesting a likely bore. The leading phase exhibited significant dissipation via small‐scale secondary instabilities suggesting vortex rings that progressed rapidly to smaller scales and turbulence (the latter not fully resolved) thereafter. The motions of these small‐scale features were consistent with their location in the duct at or below ∼83–84 km. Bore dissipation caused a momentum flux divergence and a local acceleration of the mean flow within the duct along the direction of the initial bore propagation. A number of these features are consistent with mesospheric bores observed or modeled in previous studies.

     
    more » « less
  5. Abstract

    A remarkable, large‐amplitude, mountain wave (MW) breaking event was observed on the night of 21 June 2014 by ground‐based optical instruments operated on the New Zealand South Island during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Concurrent measurements of the MW structures, amplitudes, and background environment were made using an Advanced Mesospheric Temperature Mapper, a Rayleigh Lidar, an All‐Sky Imager, and a Fabry‐Perot Interferometer. The MW event was observed primarily in the OH airglow emission layer at an altitude of ~82 km, over an ~2‐hr interval (~10:30–12:30 UT), during strong eastward winds at the OH altitude and above, which weakened with time. The MWs displayed dominant horizontal wavelengths ranging from ~40 to 70 km and temperature perturbation amplitudes as large as ~35 K. The waves were characterized by an unusual, “saw‐tooth” pattern in the larger‐scale temperature field exhibiting narrow cold phases separating much broader warm phases with increasing temperatures toward the east, indicative of strong overturning and instability development. Estimates of the momentum fluxes during this event revealed a distinct periodicity (~25 min) with three well‐defined peaks ranging from ~600 to 800 m2/s2, among the largest ever inferred at these altitudes. These results suggest that MW forcing at small horizontal scales (<100 km) can play large roles in the momentum budget of the mesopause region when forcing and propagation conditions allow them to reach mesospheric altitudes with large amplitudes. A detailed analysis of the instability dynamics accompanying this breaking MW event is presented in a companion paper, Fritts et al. (2019,https://doi.org/10.1029/2019jd030899).

     
    more » « less