skip to main content

Title: OSCA1 is an osmotic specific sensor: a method to distinguish Ca 2+ ‐mediated osmotic and ionic perception

Genetic mutants defective in stimulus‐induced Ca2+increases have been gradually isolated, allowing the identification of cell‐surface sensors/receptors, such as the osmosensor OSCA1. However, determining the Ca2+‐signaling specificity to various stimuli in these mutants remains a challenge. For instance, less is known about the exact selectivity between osmotic and ionic stresses in theosca1mutant.

Here, we have developed a method to distinguish the osmotic and ionic effects by analyzing Ca2+increases, and demonstrated thatosca1is impaired primarily in Ca2+increases induced by the osmotic but not ionic stress.

We recorded Ca2+increases induced by sorbitol (osmotic effect, OE) and NaCl/CaCl2(OE + ionic effect, IE) inArabidopsiswild‐type andosca1seedlings. We assumed the NaCl/CaCl2total effect (TE) = OE + IE, then developed procedures for Ca2+imaging, image analysis and mathematic fitting/modeling, and foundosca1defects mainly in OE.

The osmotic specificity ofosca1suggests that osmotic and ionic perceptions are independent. The precise estimation of these two stress effects is applicable not only to new Ca2+‐signaling mutants with distinct stimulus specificity but also the complex Ca2+signaling crosstalk among multiple concurrent stresses that occur naturally, and will enable us to specifically fine tune multiple signal pathways to improve crop yields.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
New Phytologist
Page Range / eLocation ID:
p. 1665-1678
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Cytokinins control critical aspects of plant development and environmental responses. Perception of cytokinin ultimately leads to the activation of proteins belonging to the type‐B Response Regulator family of cytokinin response activators. InArabidopsis thaliana, ARR1 is one of the most abundantly expressed type‐B Response Regulators.

    We investigated the link between cytokinin signaling, protein synthesis, plant growth and osmotic stress tolerance.

    We show that the increased cytokinin signaling in ARR1 gain‐of‐function transgenic lines is associated with increased rates of protein synthesis, which lead to growth inhibition and hypersensitivity to osmotic stress. Cytokinin‐induced growth inhibition and osmotic stress hypersensitivity were rescued by treatments with ABA, a hormone known to inhibit protein synthesis. We also demonstrate that cytokinin‐induced protein synthesis requires isoforms of the ribosomal protein L4 encoded by the cytokinin‐inducible genesRPL4AandRPL4D, and thatRPL4loss‐of‐function increases osmotic stress tolerance and decreases sensitivity to cytokinin‐induced growth inhibition.

    These findings reveal that an increase in protein synthesis negatively impacts growth and osmotic stress tolerance and explain some of the adverse effects of elevated cytokinin action on plant development and stress physiology.

    more » « less
  2. Summary

    Flooding represents a major threat to global agricultural productivity and food security, but plants are capable of deploying a suite of adaptive responses that can lead to short‐ or longer‐term survival to this stress. One cellular pathway thought to help coordinate these responses is via flooding‐triggered Ca2+signaling.

    We have mined publicly available transcriptomic data from Arabidopsis subjected to flooding or low oxygen stress to identify rapidly upregulated, Ca2+‐related transcripts. We then focused on transporters likely to modulate Ca2+signals. Candidates emerging from this analysis includedAUTOINHIBITED Ca2+ATPASE 1andCATION EXCHANGER 2. We therefore assayed mutants in these genes for flooding sensitivity at levels from growth to patterns of gene expression and the kinetics of flooding‐related Ca2+changes.

    Knockout mutants inCAX2especially showed enhanced survival to soil waterlogging coupled with suppressed induction of many marker genes for hypoxic response and constitutive activation of others.CAX2mutants also generated larger and more sustained Ca2+signals in response to both flooding and hypoxic challenges.

    CAX2 is a Ca2+transporter located on the tonoplast, and so these results are consistent with an important role for vacuolar Ca2+transport in the signaling systems that trigger flooding response.

    more » « less
  3. Key points

    Vascular oxidative stress increases with advancing age.

    We hypothesized that resistance vessels develop resilience to oxidative stress to protect functional integrity and tested this hypothesis by exposing isolated pressurized superior epigastric arteries (SEAs) of old and young mice to H2O2.

    H2O2‐induced death was greater in smooth muscle cells (SMCs) than endothelial cells (ECs) and lower in SEAs from oldvs. young mice; the rise in vessel wall [Ca2+]iinduced by H2O2was attenuated with ageing, as was the decline in noradrenergic vasoconstriction; genetic deletion of IL‐10 mimicked the effects of advanced age on cell survival.

    Inhibiting NO synthase or scavenging peroxynitrite reduced SMC death; endothelial denudation or inhibiting gap junctions increased SMC death; delocalization of cytochrome C activated caspases 9 and 3 to induce apoptosis.

    Vascular cells develop resilience to H2O2during ageing by preventing Ca2+overload and endothelial integrity promotes SMC survival.


    Advanced age is associated with elevated oxidative stress and can protect the endothelium from cell death induced by H2O2. Whether such protection occurs for intact vessels or differs between smooth muscle cell (SMC) and endothelial cell (EC) layers is unknown. We tested the hypothesis that ageing protects SMCs and ECs during acute exposure to H2O2(200 µm, 50 min). Mouse superior epigastric arteries (SEAs; diameter, ∼150 µm) were isolated and pressurized to 100 cmH2O at 37˚C. For SEAs from young (4 months) mice, H2O2killed 57% of SMCs and 11% of ECs in malesvs. 8% and 2%, respectively, in females. Therefore, SEAs from males were studied to resolve the effect of ageing and experimental interventions. For old (24 months) mice, SMC death was reduced to 10% with diminished accumulation of [Ca2+]iin the vessel wall during H2O2exposure. In young mice, genetic deletion of IL‐10 mimicked the protective effect of ageing on cell death and [Ca2+]iaccumulation. Whereas endothelial denudation or gap junction inhibition (carbenoxolone; 100 µm) increased SMC death, inhibiting NO synthase (l‐NAME, 100 µm) or scavenging peroxynitrite (FeTPPS, 5 µm) reduced SMC death along with [Ca2+]i. Despite NO toxicity via peroxynitrite formation, endothelial integrity protects SMCs. Caspase inhibition (Z‐VAD‐FMK, 50 µm) attenuated cell death with immunostaining for annexin V, cytochrome C, and caspases 3 and 9 pointing to induction of intrinsic apoptosis during H2O2exposure. We conclude that advanced age reduces Ca2+influx that triggers apoptosis, thereby promoting resilience of the vascular wall during oxidative stress.

    more » « less
  4. Abstract

    Freshwater ecosystems are being exposed to increasing salinisation, often because of pollution from road deicing salts, which is becoming more widely acknowledged. To address this issue, municipalities are turning towards the sodium salt alternatives of CaCl2and MgCl2, which are marketed as being safer for the environment. However, research into the actual safety of these salts on aquatic plants is lacking.

    We investigated the effects of the most common road salt (NaCl) and two alternatives (MgCl2and CaCl2) on the productivity of a common freshwater plant (i.e.,Elodea canadensis) under three salt concentrations (control, 250, and 1,000 mg Cl/L). Light‐bottle/dark‐bottle trials were performed to quantify net primary productivity, respiration, and gross primary productivity. These responses were tracked over time (1 vs. 3 weeks) to assess plant acclimation and lag effects under different levels of the three salts.

    We discovered that NaCl and CaCl2altered these measures of plant metabolism, but MgCl2had no effects. We also observed instances of acclimation (i.e. salt effects after 1 week that disappeared after 3 weeks) and lag effects (i.e. no salt effect after 1 week, but salt effects after 3 weeks). These impacts are likely to be the results of plant responses to salt at the cell and molecular levels, including short‐ and long‐term changes in photosynthetic pigments. Therefore, the plant responses were salt‐specific, with instances of plant acclimation and lag effects.

    This appears to be the first study of net primary productivity, respiration, and gross primary productivity in freshwater plants across a range of different salts, and it highlights how freshwater salinisation can have substantial effects on plant productivity. These effects will probably have an impact on the growth of macrophytes, which play key ecological roles in aquatic ecosystems.

    more » « less
  5. Summary

    We investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth inArabidopsis thaliana(Col‐0).

    Patch‐clamp whole‐cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+]cyt). We investigated the pollen‐expressed proteinsAtSLAH3,AtALMT12,AtTMEM16 andAtCCCas the putative anion transporters responsible for these currents.

    AtCCCGFPwas observed at the shank andAtSLAH3‐GFPat the tip and shank of thePTplasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip ofPTs with an anion vibrating probe were significantly lower inslah3−/−andccc−/−mutants, but unaffected inalmt12−/−andtmem16−/−. We further characterised the effect ofpHandGABAby patch clamp. Strong regulation by extracellularpHwas observed in the wild‐type, but not intmem16−/−. Our results are compatible withAtTMEM16 functioning as an anion/H+cotransporter and therefore, as a putativepHsensor.GABApresence: (1) inhibited the overall currents, an effect that is abrogated in thealmt12−/−and (2) reduced the current inAtALMT12 transfectedCOS‐7 cells, strongly suggesting the direct interaction ofGABAwithAtALMT12.

    Our data show thatAtSLAH3 andAtCCCactivity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linkingPTgrowth modulation bypH,GABA, and [Ca2+]cytthrough anionic transporters.

    more » « less