skip to main content


Title: Widespread Pollution From Secondary Sources of Organic Aerosols During Winter in the Northeastern United States
Abstract

Secondary organic aerosol (SOA) from pollution sources is thought to be a minor component of organic aerosol (OA) and fine particulate matter beyond the urban scale. Here we present airborne observations of OA in the northeastern United States, showing that 58% of OA over the region during winter is secondary and originates from pollution sources. We observed a doubling of OA mass from SOA formation in aged emissions, with unexpected similarity to OA growth observed in polluted areas in the summer. A regional model with a simple SOA parameterization based on summer measurements reproduces these winter observations and shows that pollution SOA is widespread, accounting for 14% of submicron particulate matter in near‐surface air. This source of particulate matter is largely unaccounted for in air quality management in the northeastern United States and other polluted areas.

 
more » « less
NSF-PAR ID:
10375119
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
5
ISSN:
0094-8276
Page Range / eLocation ID:
p. 2974-2983
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Understanding the properties and life cycle processes of aerosol particles inregional air masses is crucial for constraining the climate impacts ofaerosols on a global scale. In this study, characteristics of aerosols in theboundary layer (BL) and free troposphere (FT) of a remote continental regionin the western US were studied using a high-resolution time-of-flight aerosolmass spectrometer (HR-AMS) deployed at the Mount Bachelor Observatory (MBO;2763 m a.s.l.) in central Oregon in summer 2013. In the absence of wildfireinfluence, the average (±1σ) concentration of non-refractorysubmicrometer particulate matter (NR-PM1) at MBO was 2.8 (±2.8)µg m−3 and 84 % of the mass was organic. The otherNR-PM1 components were sulfate (11 %), ammonium (2.8 %),and nitrate (0.9 %). The organic aerosol (OA) at MBO from these cleanperiods showed clear diurnal variations driven by the boundary layer dynamicswith significantly higher concentrations occurring during daytime, upslopeconditions. NR-PM1 contained a higher mass fraction of sulfate andwas frequently acidic when MBO resided in the FT. In addition, OA in the FTwas found to be highly oxidized (average O∕C of 1.17) with lowvolatility while OA in BL-influenced air masses was moderately oxidized(average O∕C of 0.67) and semivolatile. There are indications thatthe BL-influenced OA observed at MBO was more enriched in organonitrates andorganosulfur compounds (e.g., MSA) and appeared to be representative ofbiogenic secondary organic aerosol (SOA) originated in the BL. A summary ofthe chemical compositions of NR-PM1 measured at a number of otherhigh-altitude locations in the world is presented and similar contrastsbetween FT and BL aerosols were observed. The significant compositional andphysical differences observed between FT and BL aerosols may have importantimplications for understanding the climate effects of regional backgroundaerosols.

     
    more » « less
  2. The UNIfied Partitioning-Aerosol phase Reaction (UNIPAR) model was established on the Comprehensive Air quality Model with extensions (CAMx) to process Secondary Organic Aerosol (SOA) formation by capturing multiphase reactions of hydrocarbons (HCs) in regional scales. SOA growth was simulated using a wide range of anthropogenic HCs including ten aromatics and linear alkanes with different carbon-lengths. The atmospheric processes of biogenic HCs (isoprene, terpenes, and sesquiterpene) were simulated for the major oxidation paths (ozone, OH radicals, and nitrate radicals) to predict day and night SOA formation. The UNIPAR model streamlined the multiphase partitioning of the lumping species originating from semi-explicitly predicted gas products and their heterogeneous chemistry to form non-volatile oligomeric species in both organic aerosol and inorganic aqueous phase. The CAMx-UNIPAR model predicted SOA formation at four ground urban sites (San Jose, Sacramento, Fresno, and Bakersfield) in California, United States during wintertime 2018. Overall, the simulated mass concentrations of the total organic matter, consisting of primary OA (POA) and SOA, showed a good agreement with the observations. The simulated SOA mass in the urban areas of California was predominated by alkane and terpene. During the daytime, low-volatile products originating from the autoxidation of long-chain alkanes considerably contributed to the SOA mass. In contrast, a significant amount of nighttime SOA was produced by the reaction of terpene with ozone or nitrate radicals. The spatial distributions of anthropogenic SOA associated with aromatic and alkane HCs were noticeably affected by the southward wind direction owing to the relatively long lifetime of their atmospheric oxidation, whereas those of biogenic SOA were nearly insensitive to wind direction. During wintertime 2018, the impact of inorganic aerosol hygroscopicity on the total SOA budget was not evident because of the small contribution of aromatic and isoprene products that are hydrophilic and reactive in the inorganic aqueous phase. However, an increased isoprene SOA mass was predicted during the wet periods, although its contribution to the total SOA was little. 
    more » « less
  3. Abstract

    This study examines the benefit of using a dynamical ensemble for 48 hr deterministic and probabilistic predictions of near‐surface fine particulate matter (PM2.5) over the contiguous United States (CONUS). Our ensemble design captures three key sources of uncertainties in PM2.5modeling including meteorology, emissions, and secondary organic aerosol (SOA) formation. Twenty‐four ensemble members were simulated using the Community Multiscale Air Quality (CMAQ) model during January, April, July, and October 2016. The raw ensemble mean performed better than most of the ensemble members but underestimated the observed PM2.5over the CONUS with the largest underestimation over the western CONUS owing to negative PM2.5bias in nearly all the members. To improve the ensemble performance, we calibrated the raw ensemble using model output statistics (MOS) and variance deficit methods. The calibrated ensemble captured the diurnal and day‐to‐day variability in observed PM2.5very well and exhibited almost zero mean bias. The mean bias in the calibrated ensemble was reduced by 90–100% in the western CONUS and by 40–100% in other parts of the CONUS, compared to the raw ensemble in all months. The corresponding reduction in root‐mean‐square error (RMSE) was 13–40%. The calibrated ensemble also showed 30% improvement in the RMSE and spread matching compared to the raw ensemble. We have also shown that a nine‐member ensemble based on combinations of three meteorological and three anthropogenic emission scenarios can be used as a smaller subset of the full ensemble when sufficient computational resources are not available in the operational setting.

     
    more » « less
  4. null (Ed.)
    Abstract. In the aqueous phase, fine particulate matter can form reactive species (RS)that influence the aging, properties, and health effects of atmosphericaerosols. In this study, we explore the RS yields of aerosol samples froma remote forest (Hyytiälä, Finland) and polluted urban locations(Mainz, Germany; Beijing, China), and we relate the RS yields to differentchemical constituents and reaction mechanisms. Ultra-high-resolution massspectrometry was used to characterize organic aerosol composition, electronparamagnetic resonance (EPR) spectroscopy with a spin-trapping technique wasapplied to determine the concentrations of ⚫OH,O2⚫-, and carbon- or oxygen-centered organic radicals, anda fluorometric assay was used to quantify H2O2. The aqueousH2O2-forming potential per mass unit of ambient PM2.5(particle diameter < 2.5 µm) was roughly the same for allinvestigated samples, whereas the mass-specific yields of radicals werelower for sampling sites with higher concentrations of PM2.5. Theabundances of water-soluble transition metals and aromatics in ambientPM2.5 were positively correlated with the relative fraction of⚫OH and negatively correlated with the relative fraction ofcarbon-centered radicals. In contrast, highly oxygenated organic molecules(HOM) were positively correlated with the relative fraction ofcarbon-centered radicals and negatively correlated with the relativefraction of ⚫OH. Moreover, we found that the relative fractionsof different types of radicals formed by ambient PM2.5 were comparableto surrogate mixtures comprising transition metal ions, organichydroperoxide, H2O2, and humic or fulvic acids. The interplay oftransition metal ions (e.g., iron and copper ions), highly oxidized organicmolecules (e.g., hydroperoxides), and complexing or scavenging agents (e.g.,humic or fulvic acids) leads to nonlinear concentration dependencies inaqueous-phase RS production. A strong dependence on chemical compositionwas also observed for the aqueous-phase radical yields oflaboratory-generated secondary organic aerosols (SOA) from precursormixtures of naphthalene and β-pinene. Our findings show how thecomposition of PM2.5 can influence the amount and nature ofaqueous-phase RS, which may explain differences in the chemical reactivityand health effects of particulate matter in clean and polluted air. 
    more » « less
  5. Wildfires are an important atmospheric source of primary organic aerosol (POA) and precursors for secondary organic aerosol (SOA) at regional and global scales. However, there are large uncertainties surrounding the emissions and physicochemical processes that control the transformation, evolution, and properties of POA and SOA in large wildfire plumes. We develop a plume version of a kinetic model to simulate the dilution, oxidation chemistry, thermodynamic properties, and microphysics of organic aerosol (OA) in wildfire smoke. The model is applied to study the in-plume OA in four large wildfire smoke plumes intercepted during an aircraft-based field campaign in summer 2018 in the western United States. Based on estimates of dilution and oxidant concentrations before the aircraft first intercepted the plumes, we simulate the OA evolution from very close to the fire to several hours downwind. Our model results and sensitivity simulations suggest that dilution-driven evaporation of POA and simultaneous photochemical production of SOA are likely to explain the observed evolution in OA mass with physical age. The model, however, substantially underestimates the change in the oxygen-to-carbon ratio of the OA compared to measurements. In addition, we show that the rapid chemical transformation within the first hour after emission is driven by higher-than-ambient OH concentrations (3×10 6 -10 7 molecules cm -3 ) and the slower evolution over the next several hours is a result of lower-than-ambient OH concentrations (<10 6 molecules cm -3 ) and depleted SOA precursors. Model predictions indicate that the OA measured several hours downwind of the fire is still dominated by POA but with an SOA fraction that varies between 30% and 56% of the total OA. Semivolatile, heterocyclic, and oxygenated aromatic compounds, in that order, were found to contribute substantially (>90%) to SOA formation. Future work needs to focus on better understanding the dynamic evolution closer to the fire and resolving the rapid change in the oxidation state of OA with physical age. 
    more » « less