Abstract The largest obstacle to managing satellites in low Earth orbit (LEO) is accurately forecasting the neutral mass densities that appreciably impact atmospheric drag. Empirical thermospheric models are often used to estimate neutral densities but they struggle to forecast neutral densities during geomagnetic storms when they are highly variable. Physics‐based models are thus increasingly turned to for their ability to describe the dynamical evolution of neutral densities. However, these models require observations to constrain dynamical state variables to be able to forecast mass densities with adequate fidelity. The LEO environment has scarce neutral state observations. Here, we demonstrate, in simulated experiments, a reduction in orbit errors and neutral densities using a physics‐based, data assimilation approach with ionospheric observations. Using a coupled thermosphere‐ionosphere model, the Thermosphere Ionosphere Electrodynamics General Circulation Model, we assimilate Constellation Observing System for Meterology, Ionosphere, and Climate electron density profiles (EDPs) derived from radio occultation (RO) observations. We use the EDPs to directly update neutral states, improving errors for neutral temperature by 70% and neutral winds by 20%. Updated neutral temperature and neutral winds additionally improve helium composition errors by 60% and 40%, respectively. Improved neutral density estimates correspond to a reduction in orbit errors of 1.2 km over 2 days, a 70% reduction over a no‐assimilation control, and a 29 km improvement over 9 days. This study builds on the results of our earlier work to further develop and demonstrate the potential of using a vast and growing RO data source, with a physics‐based model, to overcome our limited number of neutral observations.
more »
« less
Comparison of a Neutral Density Model With the SET HASDM Density Database
Abstract The EXospheric TEMperatures on a PoLyhedrAl gRid (EXTEMPLAR) method predicts the neutral densities in the thermosphere. The performance of this model has been evaluated through a comparison with the Air Force High Accuracy Satellite Drag Model (HASDM). The Space Environment Technologies (SET) HASDM database that was used for this test spans the 20 years 2000 through 2019, containing densities at 3 hr time intervals at 25 km altitude steps, and a spatial resolution of 10° latitude by 15° longitude. The upgraded EXTEMPLAR that was tested uses the newer Naval Research Laboratory MSIS 2.0 model to convert global exospheric temperature values to neutral density as a function of altitude. The revision also incorporated time delays that varied as a function of location, between the total Poynting flux in the polar regions and the exospheric temperature response. The density values from both models were integrated on spherical shells at altitudes ranging from 200 to 800 km. These sums were compared as a function of time. The results show an excellent agreement at temporal scales ranging from hours to years. The EXTEMPLAR model performs best at altitudes of 400 km and above, where geomagnetic storms produce the largest relative changes in neutral density. In addition to providing an effective method to compare models that have very different spatial resolutions, the use of density totals at various altitudes presents a useful illustration of how the thermosphere behaves at different altitudes, on time scales ranging from hours to complete solar cycles.
more »
« less
- Award ID(s):
- 2019465
- PAR ID:
- 10375156
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Space Weather
- Volume:
- 19
- Issue:
- 12
- ISSN:
- 1542-7390
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract On 3 February 2022, at 18:13 UTC, SpaceX launched and a short time later deployed 49 Starlink satellites at an orbit altitude between 210 and 320 km. The satellites were meant to be further raised to 550 km. However, the deployment took place during the main phase of a moderate geomagnetic storm, and another moderate storm occurred on the next day. The resulting increase in atmospheric drag led to 38 out of the 49 satellites reentering the atmosphere in the following days. In this work, we use both observations and simulations to perform a detailed investigation of the thermospheric conditions during this storm. Observations at higher altitudes, by Swarm‐A (∼438 km, 09/21 Local Time [LT]) and the Gravity Recovery and Climate Experiment Follow‐On (∼505 km, 06/18 LT) missions show that during the main phase of the storms the neutral mass density increased by 110% and 120%, respectively. The storm‐time enhancement extended to middle and low latitudes and was stronger in the northern hemisphere. To further investigate the thermospheric variations, we used six empirical and first‐principle numerical models. We found the models captured the upper and lower thermosphere changes, however, their simulated density enhancements differ by up to 70%. Further, the models showed that at the low orbital altitudes of the Starlink satellites (i.e., 200–300 km) the global averaged storm‐time density enhancement reached up to ∼35%–60%. Although such storm effects are far from the largest, they seem to be responsible for the reentry of the 38 satellites.more » « less
-
Abstract The Starlink satellites launched on 3 February 2022 were lost before they fully arrived in their designated orbits. The loss was attributed to two moderate geomagnetic storms that occurred consecutively on 3–4 February. We investigate the thermospheric neutral mass density variation during these storms with the Multiscale Atmosphere‐Geospace Environment (MAGE) model, a first‐principles, fully coupled geospace model. Simulated neutral density enhancements are validated by Swarm satellite measurements at the altitude of 400–500 km. Comparison with standalone TIEGCM and empirical NRLMSIS 2.0 and DTM‐2013 models suggests better performance by MAGE in predicting the maximum density enhancement and resolving the gradual recovery process. Along the Starlink satellite orbit in the middle thermosphere (∼200 km altitude), MAGE predicts up to 150% density enhancement near the second storm peak while standalone TIEGCM, NRLMSIS 2.0, and DTM‐2013 suggest only ∼50% increase. MAGE also suggests altitudinal, longitudinal, and latitudinal variability of storm‐time percentage density enhancement due to height dependent Joule heating deposition per unit mass, thermospheric circulation changes, and traveling atmospheric disturbances. This study demonstrates that a moderate storm can cause substantial density enhancement in the middle thermosphere. Thermospheric mass density strongly depends on the strength, timing, and location of high‐latitude energy input, which cannot be fully reproduced with empirical models. A physics‐based, fully coupled geospace model that can accurately resolve the high‐latitude energy input and its variability is critical to modeling the dynamic response of thermospheric neutral density during storm time.more » « less
-
Abstract The Mass Spectrometer and Incoherent Scatter radar (MSIS) model family has been developed and improved since the early 1970's. The most recent version of MSIS is the Naval Research Laboratory (NRL) MSIS 2.0 empirical atmospheric model. NRLMSIS 2.0 provides species density, mass density, and temperature estimates as function of location and space weather conditions. MSIS models have long been a popular choice of thermosphere model in the research and operations community alike, but—like many models—does not provide uncertainty estimates. In this work, we develop an exospheric temperature model based in machine learning that can be used with NRLMSIS 2.0 to calibrate it relative to high‐fidelity satellite density estimates directly through the exospheric temperature parameter. Instead of providing point estimates, our model (called MSIS‐UQ) outputs a distribution which is assessed using a metric called the calibration error score. We show that MSIS‐UQ debiases NRLMSIS 2.0 resulting in reduced differences between model and satellite density of 25% and is 11% closer to satellite density than the Space Force's High Accuracy Satellite Drag Model. We also show the model's uncertainty estimation capabilities by generating altitude profiles for species density, mass density, and temperature. This explicitly demonstrates how exospheric temperature probabilities affect density and temperature profiles within NRLMSIS 2.0. Another study displays improved post‐storm overcooling capabilities relative to NRLMSIS 2.0 alone, enhancing the phenomena that it can capture.more » « less
-
Low Earth orbit (LEO) radio occultation|radio occultations (RO) constellations can provide global electron density profiles (EDPs) to better specify and forecast the ionosphere‐thermosphere (I‐T) system. To inform future RO constellation design, this study uses comprehensive Observing System Simulation Experiments (OSSEs) to assess the ionospheric specification impact of assimilating synthetic EDPs into a coupled I‐T model. These OSSEs use 10 different sets of RO constellation configurations containing 6 or 12 LEO satellites with base orbit parameter combinations of 520 or 800 km altitude, and 24° or 72° inclination. The OSSEs are performed using the Ensemble Adjustment Kalman Filter implemented in the data assimilation (DA) Research Testbed and the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM). A different I‐T model is used for the nature run, the Whole Atmosphere Model‐Ionosphere Plasmasphere Electrodynamics (WAM‐IPE), to simulate the period of interest is the St. Patrick's Day storm on March 13–18, 2015. Errors from models and EDP retrieval are realistically accounted for in this study through distinct I‐T models and by retrieving synthetic EDPs through an extension Abel inversion algorithm. OSSE assessment, using multiple metrics, finds that greater EDP spatial coverage leading to improved specification at altitudes 300 km and above, with the 520 km altitude constellations performing best due to yielding the highest observation counts. A potential performance limit is suggested with two 6‐satellite constellations. Lastly, close examination of Abel inversion error impacts highlights major EDP limitations at altitudes below 200 km and dayside equatorial regions with large horizontal gradients and low electron density magnitudes.more » « less
An official website of the United States government
