skip to main content


Title: Large herbivore impact on plant biomass along multiple resource gradients in the Serengeti
Abstract

Herbivores form an important link in the transfer of energy within a food web and are strongly influenced by bottom‐up trophic cascades. Current hypotheses suggest that herbivore consumption and impact on plants should scale positively with plant resource availability. However, depending on the effect of resources on plant quantity and quality, herbivore impact may vary with different types of resources.

We test four alternative hypotheses for the relationship between plant biomass, herbivore impact on plant biomass and plant resource gradients, each based on how resources might affect plant abundance and quality to herbivores. We measured plant biomass for four non‐consecutive years in a long‐term grazing exclosure experiment in the Serengeti National Park that includes seven sites that vary substantially in rainfall and soil and plant nitrogen (N) and phosphorus (P).

Our data supported the hypothesis that herbivore impact is controlled by plant quality, in this case driven by plant P, as herbivore effects on biomass decreased with higher rainfall but increased with greater plant P, but not N content. To our knowledge, this is the first experimental study to indicate that wild mammalian herbivory is associated with P availability rather than N.

Synthesis. Our results suggest that P, in addition to water and N, may play a more important role in driving trophic interactions in terrestrial systems than previously realized. Given the uncertainties in rainfall due to climate change and increasing anthropogenic manipulations of global N and P cycles, our findings emphasize the need to consider multiple resources for understanding how trophic interactions might be influenced by environmental variables.

 
more » « less
NSF-PAR ID:
10375182
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
110
Issue:
7
ISSN:
0022-0477
Page Range / eLocation ID:
p. 1537-1547
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We investigate where bottom‐up and top‐down control regulates ecological communities as a mechanism linking ecological gradients to the geography of consumer abundance and biomass. We use standardized surveys of 54 North American grasslands to test alternate hypotheses predicting 100‐fold shifts in the biomass of four common grassland arthropod taxa—Auchenorrhyncha, sucking herbivores, Acrididae, chewing herbivores, Tettigoniidae, omnivores, and Araneae, predators.

    Bottom‐up models predict that consumer biomass tracks plant quantity (e.g. productivity and standing biomass) and quality (nutrient content) and that ectotherm access to food increases with temperature. Each of the focal trophic groups responded differently to these drivers: the biomass of sucking herbivores and omnivores increased with plant biomass; that of chewing herbivores tracked plant quality; and predator biomass did not depend on plant quality, plant quantity or temperature.

    The Exploitation Ecosystem Hypothesis is a top‐down hypothesis that predicts a shift from resource limitation of herbivores when plant production is low, to predator limitation when plant production is high. In grasslands where spider biomass was low, herbivore biomass increased with plant biomass, whereas bottom‐up structuring was not evident when spiders were abundant. Furthermore, neither predator biomass nor trophic position (via stable isotope analysis) increased with plant biomass, suggesting predators themselves are top‐down limited.

    Stable isotope analysis revealed that trophic position of the chewing herbivore and omnivore increased significantly with plant biomass, suggesting these groups increased scavenging and meat consumption in grasslands with higher carbohydrate availability.

    Taken together, our snapshot sampling documents gradients of food web structure across 54 grasslands, consistent with multiple hypotheses of bottom‐up and top‐down regulation.

     
    more » « less
  2. Abstract

    Consumer‐resource interactions are often influenced by other species in the community, such as when neighbouring plants increase or reduce herbivory to a focal plant species (known as associational effects). The many studies on associational effects between a focal plant and some neighbour have shown that these effects can vary greatly in strength and direction. But because almost all of these studies measure associational effects from only one or two neighbour species, we know little about the actual range of associational effects that a plant species might encounter in a natural setting. This makes it difficult to determine how important effects of neighbours are in real field settings, and how associational effects might interact with competition and other processes to influence plant community composition.

    In this study, we used a field experiment with a focal species,Solanum carolinense, and 11 common neighbour species to investigate how associational effects vary among many co‐occurring neighbour species and to test whether factors such as neighbour plant apparency, phylogenetic proximity to the focal species, or effects on focal plant defence traits help to explain interspecific variation in associational effect strength.

    We found that some neighbour species affectedS. carolinensedamage and attack by specialist herbivores, but associational effects of most neighbours were weak. Associational effects increased herbivore attack on average earlier in the season (associational susceptibility) and reduced herbivore attack on average later in the season (associational resistance) relative toS. carolinensein monoculture.

    We found some evidence that a neighbour's associational effect was related to its biomass and phylogenetic proximity to the focal species. While neighbour species differed in their effects on physical leaf traits of focal plants (trichome density, specific leaf area, and leaf toughness), these traits did not appear to mediate the effects of neighbours on focal plant herbivory.

    Synthesis. Our results suggest that the distribution of associational effect strengths in natural communities are similar to those observed for other interaction types, and that multiple mechanisms are likely acting simultaneously to shape associational effects of different neighbour species.

     
    more » « less
  3. Abstract

    Herbivory is a key process structuring vegetation in savannas, especially in Africa where large mammal herbivore communities remain intact. Exclusion experiments consistently show that herbivores impact savanna vegetation, but effect size variation has resisted explanation, limiting our understanding of the past, present and future roles of herbivory in savanna ecosystems.

    Synthesis of vegetation responses to herbivore exclusion shows that herbivory decreased grass abundance by 57.0% and tree abundance by 30.6% across African savannas.

    The magnitude of herbivore exclusion effects scaled with herbivore abundance: more grazing herbivores resulted in larger grass responses and more browsing herbivores in larger tree responses. However, existing experiments are concentrated in semi‐arid savannas (400–800‐mm rainfall) and soils data are mostly lacking, which makes disentangling environmental constraints a challenge and priority for future research.

    Observed herbivore impacts were ~2.1× larger than existing estimates modelled based on consumption. Wildlife metabolic rates may be higher than are usually used for estimating consumption, which offers one clear avenue for reconciling estimated herbivore consumption with observed herbivore impacts. Plant‐soil feedbacks, plant community composition, and the phenological or demographic timing of herbivory may also influence vegetation productivity, thereby magnifying herbivore impacts.

    Because herbivore abundance so closely predicts vegetation impact, changes in herbivore abundance through time are likely predictive of the past and future of their impacts. Grazer diversity in Africa has declined from its peak 1 million years ago and wild grazer abundance has declined historically, suggesting that grazing likely had larger impacts in the past than it does today.

    Current wildlife impacts are dominated by small‐bodied mixed feeders, which will likely continue into the future, but the magnitude of top‐down control may also depend on changing climate, fire and atmospheric CO2.

    Synthesis. Herbivore biomass determines the magnitude of their impacts on savanna vegetation, with effect sizes based on direct observation that outstrip existing modelled estimates across African savannas. Findings suggest substantial ecosystem impacts of herbivory and allow us to generate evidence‐based hypotheses of the past and future impacts of herbivores on savanna vegetation.

     
    more » « less
  4. Abstract

    Environmental changes can rapidly alter standing biomass in tundra plant communities; yet, to what extent can they modify plant‐community nutrient levels? Nutrient levels and their changes can affect biomass production, nutrient cycling rates and nutrient availability to herbivores. We examined how environmental perturbations alter Arctic plant‐community leaf nutrient concentrations (percentage of dry mass, i.e. resource quality) and nutrient pools (absolute mass per unit area, i.e. resource quantity).

    We experimentally imposed two different types of environmental perturbations in a high‐Arctic ecosystem in Svalbard, spanning three habitats differing in soil moisture and plant‐community composition. We mimicked both a pulse perturbation (a grubbing event by geese in spring) and a press perturbation (a constant level of summer warming).

    After 2 years of perturbations, we quantified peak‐season nitrogen and phosphorus concentrations in 1268 leaf samples from the most abundant vascular plant species. We derived community‐weighted nutrient concentrations and total amount of nutrients (pools) for whole plant communities and individual plant functional types (PFTs).

    Spring grubbing increased plant‐community nutrient concentrations in mesic (+13%) and wet (+8%), but not moist, habitats, and reduced nutrient pools in all habitats (moist: −49%; wet, mesic: −31% to −37%). Conversely, summer warming reduced plant‐community nutrient concentrations in mesic and moist (−10% to −12%), but not wet, habitats and increased nutrient pools in moist habitats (+50%).

    Fast‐growing PFTs exhibited nutrient‐concentration responses, while slow‐growing PFTs generally did not. Grubbing enhanced nutrient concentrations of forbs and grasses in wet habitats (+20%) and of horsetails and grasses in mesic habitats (+19–23%). Conversely, warming decreased nutrient concentrations of horsetails in wet habitats (−15%) and of grasses, horsetails and forbs in moist habitats (−12% to −15%). Nutrient pools held by each PFT were less affected, although the most abundant PFTs responded to perturbations.

    Synthesis. Arctic plant‐community nutrient levels can be rapidly altered by environmental changes, with consequences for short‐term process rates and plant‐herbivore interactions. Community‐level responses in nutrient concentrations and pools were opposing and differed among habitats and PFTs. Our findings have implications for how we understand herbivory‐ and warming‐induced shifts in the fine‐scaled distribution of resource quality and quantity within and across tundra habitats.

     
    more » « less
  5. Summary

    To distinguish among hypotheses on the importance of resource‐exchange ratios in outcomes of mutualisms, we measured resource (carbon (C), nitrogen (N), and phosphorus (P)) transfers and their ratios, betweenPinus taedaseedlings and two ectomycorrhizal (EM) fungal species,Rhizopogon roseolusandPisolithus arhizusin a laboratory experiment.

    We evaluated how ambient light affected those resource fluxes and ratios over three time periods (10, 20, and 30 wk) and the consequences for plant and fungal biomass accrual, in environmental chambers.

    Our results suggest that light availability is an important factor driving absolute fluxes of N, P, and C, but not exchange ratios, although its effects vary among EM fungal species. Declines in N : C and P : C exchange ratios over time, as soil nutrient availability likely declined, were consistent with predictions of biological market models. Absolute transfer of P was an important predictor of both plant and fungal biomass, consistent with the excess resource‐exchange hypothesis, and N transfer to plants was positively associated with fungal biomass.

    Altogether, light effects on resource fluxes indicated mixed support for various theoretical frameworks, while results on biomass accrual better supported the excess resource‐exchange hypothesis, although among‐species variability is in need of further characterization.

     
    more » « less