skip to main content

Title: Configuration of the Earth’s Magnetotail Current Sheet

The spatial scale and intensity of Earth’s magnetotail current sheet determine the magnetotail configuration, which is critical to one of the most energetically powerful phenomena in the Earth’s magnetosphere, substorms. In the absence of statistical information about plasma currents, theories of the magnetotail current sheets were mostly based on the isotropic stress balance. Such models suggest that thin current sheets cannot be long and should have strong plasma pressure gradients along the magnetotail. Using Magnetospheric Multiscale and THEMIS observations and global simulations, we explore realistic configuration of the magnetotail current sheet. We find that the magnetotail current sheet is thinner than expected from theories that assume isotropic stress balance. Observed plasma pressure gradients in thin current sheets are insufficiently strong (i.e., current sheets are too long) to balance the magnetic field line tension force. Therefore, pressure anisotropy is essential in the configuration of thin current sheets where instability precedes substorm onset.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Statistical and case studies, as well as data‐mining reconstructions suggest that the magnetotail current in the substorm growth phase has a multiscale structure with a thin ion‐scale current sheet embedded into a much thicker sheet. This multiscale structure may be critically important for the tail stability and onset conditions for magnetospheric substorms. The observed thin current sheets are found to be too long to be explained by the models with isotropic plasmas. At the same time, plasma observations reveal only weak field‐aligned anisotropy of the ion species, whereas the anisotropic electron contribution is insufficient to explain the force balance discrepancy. Here we elaborate a self‐consistent equilibrium theory of multiscale current sheets, which differs from conventional isotropic models by weak ion anisotropy outside the sheet and agyrotropy caused by quasi‐adiabatic ion orbits inside the sheet. It is shown that, in spite of weak anisotropy, the current density perturbation may be quite strong and localized on the scale of the figure‐of‐eight ion orbits. The magnetic field, current and plasma density in the limit of weak field‐aligned ion anisotropy and strong current sheet embedding, when the ion scale thin current sheet is nested in a much thicker Harris‐like current sheet, are investigated and presented in an analytical form making it possible to describe the multiscale equilibrium in sharply stretched 2D magnetic field configurations and to use it in kinetic simulations and stability analysis.

    more » « less
  2. Abstract

    Onset of reconnection in the tail requires the current sheet thickness to be of the order of the ion thermal gyroradius or smaller. However, existing isotropic plasma models cannot explain the formation of such thin sheets at distances where the X‐lines are typically observed. Here we reproduce such thin and long sheets in particle‐in‐cell simulations using a new model of their equilibria with weakly anisotropic ion species assuming quasi‐adiabatic ion dynamics, which substantially modifies the current density. It is found that anisotropy/agyrotropy contributions to the force balance in such equilibria are comparable to the pressure gradient in spite of weak ion anisotropy. New equilibria whose current distributions are substantially overstretched compared to the magnetic field lines are found to be stable in spite of the fact that they are substantially longer than isotropic sheets with similar thickness.

    more » « less
  3. Abstract

    Substorm‐type evolution of the Earth's magnetosphere is investigated by mining more than two decades (1995–2017) of spaceborne magnetometer data from multiple missions including the first two years (2016‐2017) of the Magnetospheric MultiScale mission. This investigation reveals interesting features of plasma evolution distinct from ideal magnetohydrodynamics (MHD) behavior: X‐lines, thin current sheets, and regions with the tailward gradient of the equatorial magnetic fieldBz. X‐lines are found to form mainly beyond 20RE, but for strong driving, with the solar wind electric field exceeding ∼5mV/m, they may come closer. For substorms with weaker driving, X‐lines may be preceded by redistribution of the magnetic flux in the tailwardBzgradient regions, similar to the magnetic flux release instability discovered earlier in PIC and MHD simulations as a precursor mechanism of the reconnection onset. Current sheets in the growth phase may be as thin as 0.2RE, comparable to the thermal ions gyroradius, and at the same time, as long as 15RE. Such an aspect ratio is inconsistent with the isotropic force balance for observed magnetic field configurations. These findings can help resolve kinetic mechanisms of substorm dipolarizations and adjust kinetic generalizations of global MHD models of the magnetosphere. They can also guide and complement microscale analysis of nonideal effects.

    more » « less
  4. Abstract

    The bimodal transport in the plasma sheet consists of sunward large‐scale, coherent, and slow motion of charged particles in the closed‐field‐line region as well as meso‐scale, localized, and transient fast flow bursts. It has been found that these earthward moving bursty bulk flows, also called “bubbles,” play a crucial role not only in the transporting mass and energy, but also in resolving the pressure‐balance crisis with their integrated effects. In this study, we examine how bubbles can affect the average configuration of the middle and inner plasma sheet using the Inertialized Rice Convection Model (RCM‐I). Bubbles are sporadically imposed aton the nightside plasma sheet, with optimized parameters that constrain their statistical properties. The consequence of the injection of these series of bubbles is evaluated by comparing against observed statistical results, including plasma moments and magnetic field configuration. Our findings confirm that bursty bulk flows are indispensable elements in the magnetotail plasma sheet.

    more » « less
  5. Abstract

    The magnetotail current sheet carries the current responsible for the largest fraction of the energy storage in the magnetotail, the magnetic energy in the lobes. It is thus inextricably linked with the dynamics and evolution of many magnetospheric phenomena, such as substorms. The magnetotail current sheet structure and stability depend mostly on the kinetic properties of the plasma populating the magnetotail. One of the most underinvestigated properties of this plasma is electron temperature anisotropy, which may contribute a large fraction of the total current. Using observations from five missions in the magnetotail, we examine the electron temperature anisotropy,Te/Te, and its potential contribution to the current density, quantified by the firehose parameter (βeβe)/2, acrossy∈[−20,20]REandx∈[−100,−10]RE. We find that a significant fraction (>30%) of all current sheets have an anisotropic electron current density >10% of the total current. These current sheets form two distinct groups: (1) near‐Earth (<30 RE) accompanied by weak plasma flows (<100 km/s) and enhanced equatorial magnetic field (>3 nT) and (2) middle tail (>40 RE) accompanied by fast plasma flows (>300 km/s) and small equatorial magnetic field (≤1 nT). For a significant number of near‐Earth current sheets, the anisotropic electron current can be >25% of the total current density. Our findings suggest that electron temperature anisotropy should be included in current sheet models describing realistic magnetotail structure and dynamics.

    more » « less