Abstract Molecular emission was imaged with ALMA from numerous components near and within bright H2-emitting knots and absorbing dust globules in the Crab Nebula. These observations provide a critical test of how energetic photons and particles produced in a young supernova remnant interact with gas, cleanly differentiating between competing models. The four fields targeted show contrasting properties but within them, seventeen distinct molecular clouds are identified with CO emission; a few also show emission from HCO+, SiO, and/or SO. These observations are compared with Cloudy models of these knots. It has been suggested that the Crab filaments present an exotic environment in which H2emission comes from a mostly neutral zone probably heated by cosmic rays produced in the supernova surrounding a cool core of molecular gas. Our model is consistent with the observed COJ= 3 − 2 line strength. These molecular line emitting knots in the Crab Nebula present a novel phase of the ISM representative of many important astrophysical environments.
more »
« less
Recent Updates to the Gas-phase Chemical Reactions and Molecular Lines in CLOUDY: Their Effects on Millimeter and Submillimeter Molecular Line Predictions
Abstract Here, we present our current updates to the gas-phase chemical reaction rates and molecular lines in the spectral synthesis codecloudy, and its implications in spectroscopic modeling of various astrophysical environments. We include energy levels, and radiative and collisional rates for HF, CF+, HC3N, ArH+, HCl, HCN, CN, CH, and CH2. Simultaneously, we expand our molecular network involving these molecules. For this purpose, we have added 561 new reactions and have updated the existing 165 molecular reaction rates involving these molecules. As a result,cloudynow predicts all the lines arising from these nine molecules. In addition, we also update H2–H2collisional data up to rotational levelsJ= 31 forv= 0. We demonstrate spectroscopic simulations of these molecules for a few astrophysical environments. Our existing model for globules in the Crab Nebula successfully predicts the observed column density of ArH+. Our model predicts a detectable amount of HeH+, OH+, and CH+for the Crab Nebula. We also model the interstellar medium toward HD185418, W31C, and NGC 253, and our predictions match with most of the observed column densities within the observed error bars. Very often molecular lines trace various physical conditions. Hence, this update will be very supportive for spectroscopic modeling of various astrophysical environments, particularly involving submillimeter and mid-infrared observations using the Atacama Large Millimeter/submillimeter Array and the James Webb Space Telescope, respectively.
more »
« less
- Award ID(s):
- 1910687
- PAR ID:
- 10375200
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 934
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 53
- Size(s):
- Article No. 53
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Here we present our current update of CLOUDY on gas-phase chemical reactions for the formation and destruction of the SiS molecule, its energy levels, and collisional rate coefficients with H 2 , H, and He over a wide range of temperatures. As a result, henceforth the spectral synthesis code CLOUDY predicts SiS line intensities and column densities for various astrophysical environments.more » « less
-
This paper presents an extensive parameter study of a non-intrusive and non-seeded laser diagnostic method for measuring one dimensional (1D) rotational temperature of molecular nitrogen (N2) at 165 - 450 K. Compared to previous efforts using molecular oxygen, here resonantly ionized and photoelectron induced fluorescence of molecular nitrogen for thermometry (N2RIPT) was demonstrated. The RIPT signal is generated by directly probing various rotational levels within the rovibrational absorption band of N2, corresponding to the 3-photon transition of N2(X1Σg+,v=0→b1Πu,v′=6) near 285 nm, without involving collisional effects of molecular oxygen and nitrogen. The photoionized N2produces strong first negative band of N2+(B2Σu+−X2Σg+) near 390 nm, 420 nm, and 425 nm. Boltzmann analyses of various discrete fluorescence emission lines yield rotational temperatures of molecular nitrogen. By empirically choosing multiple rotational levels within the absorption band, non-scanning thermometry can be accurately achieved for molecular nitrogen. It is demonstrated that the N2RIPT technique can measure 1D temperature profile up to ∼5 cm in length within a pure N2environment. Multiple wavelengths are thoroughly analyzed and listed that are accurate for RIPT for various temperature ranges.more » « less
-
Abstract We present the average rest-frame spectrum of the final catalog of dusty star-forming galaxies (DSFGs) selected from the South Pole Telescope's SPT-SZ survey and measured with Band 3 of the Atacama Large Millimeter/submillimeter Array. This work builds on the previous average rest-frame spectrum, given in Spilker et al. (2014) for the first 22 sources, and is comprised of a total of 78 sources, normalized by their respective apparent dust masses. The spectrum spans 1.9 <z< 6.9 and covers rest-frame frequencies of 240–800 GHz. Combining this data with low-JCO observations from the Australia Telescope Compact Array, we detect multiple bright line features from12CO, [Ci], and H2O, as well as fainter molecular transitions from13CO, HCN, HCO+, HNC, CN, H2O+, and CH. We use these detections, along with limits from other molecules, to characterize the typical properties of the interstellar medium (ISM) for these high-redshift DSFGs. We are able to divide the large sample into subsets in order to explore how the average spectrum changes with various galaxy properties, such as effective dust temperature. We find that systems with hotter dust temperatures exhibit differences in the bright12CO emission lines, and contain either warmer and more excited dense gas tracers or larger dense gas reservoirs. These observations will serve as a reference point to studies of the ISM in distant luminous DSFGs (LIR> 1012L⊙), and will inform studies of chemical evolution before the peak epoch of star formation atz= 2–3.more » « less
-
Abstract We analyze the cool gas in and around 14 nearby galaxies (atz< 0.1) mapped with the Sloan Digital Sky Survey IV MaNGA survey by measuring absorption lines produced by gas in spectra of background quasars/active galactic nuclei at impact parameters of 0–25 effective radii from the galactic centers. Using Hubble Space Telescope/Cosmic Origins Spectrograph, we detect absorption at the galactic redshift and measure or constrain column densities of neutral (Hi, Ni, Oi, and Ari), low-ionization (Siii, Sii, Cii, Nii, and Feii), and high-ionization (Siiii, Feiii, Nv, and Ovi) species for 11 galaxies. We derive the ionization parameter and ionization-corrected metallicity usingcloudyphotoionization models. The Hicolumn density ranges from ∼1013to ∼1020cm−2and decreases with impact parameter forr≳Re. Galaxies with higher stellar mass have weaker Hiabsorption. Comparing absorption velocities with MaNGA radial velocity maps of ionized gas line emissions in galactic disks, we find that the neutral gas seen in absorption corotates with the disk out to ∼10Re. Sight lines with lower elevation angles show lower metallicities, consistent with the metallicity gradient in the disk derived from MaNGA maps. Higher-elevation angle sight lines show higher ionization, lower Hicolumn density, supersolar metallicity, and velocities consistent with the direction of galactic outflow. Our data offer the first detailed comparisons of circumgalactic medium (CGM) properties (kinematics and metallicity) with extrapolations of detailed galaxy maps from integral field spectroscopy; similar studies for larger samples are needed to more fully understand how galaxies interact with their CGM.more » « less