skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atmospheric Effects of >30‐keV Energetic Electron Precipitation in the Southern Hemisphere Winter During 2003
Abstract The atmospheric effects of precipitating electrons are not fully understood, and uncertainties are large for electrons with energies greater than ~30 keV. These electrons are underrepresented in modeling studies today, primarily because valid measurements of their precipitating spectral energy fluxes are lacking. This paper compares simulations from the Whole Atmosphere Community Climate Model (WACCM) that incorporated two different estimates of precipitating electron fluxes for electrons with energies greater than 30 keV. The estimates are both based on data from the Polar Orbiting Environmental Satellite Medium Energy Proton and Electron Detector (MEPED) instruments but differ in several significant ways. Most importantly, only one of the estimates includes both the 0° and 90° telescopes from the MEPED instrument. Comparisons are presented between the WACCM results and satellite observations poleward of 30°S during the austral winter of 2003, a period of significant energetic electron precipitation. Both of the model simulations forced with precipitating electrons with energies >30 keV match the observed descent of reactive odd nitrogen better than a baseline simulation that included auroral electrons, but no higher energy electrons. However, the simulation that included both telescopes shows substantially better agreement with observations, particularly at midlatitudes. The results indicate that including energies >30 keV and the full range of pitch angles to calculate precipitating electron fluxes is necessary for improving simulations of the atmospheric effects of energetic electron precipitation.  more » « less
Award ID(s):
1651428
PAR ID:
10375206
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
124
Issue:
10
ISSN:
2169-9380
Format(s):
Medium: X Size: p. 8138-8153
Size(s):
p. 8138-8153
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Energetic electron precipitation from Earth’s outer radiation belt heats the upper atmosphere and alters its chemical properties. The precipitating flux intensity, typically modelled using inputs from high-altitude, equatorial spacecraft, dictates the radiation belt’s energy contribution to the atmosphere and the strength of space-atmosphere coupling. The classical quasi-linear theory of electron precipitation through moderately fast diffusive interactions with plasma waves predicts that precipitating electron fluxes cannot exceed fluxes of electrons trapped in the radiation belt, setting an apparent upper limit for electron precipitation. Here we show from low-altitude satellite observations, that ~100 keV electron precipitation rates often exceed this apparent upper limit. We demonstrate that such superfast precipitation is caused by nonlinear electron interactions with intense plasma waves, which have not been previously incorporated in radiation belt models. The high occurrence rate of superfast precipitation suggests that it is important for modelling both radiation belt fluxes and space-atmosphere coupling. 
    more » « less
  2. Abstract Whistler mode waves scatter energetic electrons, causing them to precipitate into the Earth's atmosphere. While the interactions between whistler mode waves and electrons are well understood, the global distribution of electron precipitation driven by whistler mode waves needs futher investigations. We present a two‐stage method, integrating neural networks and quasi‐linear theory, to simulate global electron precipitation driven by whistler mode waves. By applying this approach to the 17 March 2013 geomagnetic storm event, we reproduce the rapidly varying precipitation pattern over various phases of the storm. Then we validate our simulation results with POES/MetOp satellite observations. The precipitation pattern is consistent between simulations and observations, suggesting that most of the observed electron precipitation can be attributed to scattering by whistler mode waves. Our results indicate that chorus waves drive electron precipitation over the premidnight‐to‐afternoon sector during the storm main phase, with simulated peak energy fluxes of 20 erg/cm2/s and characteristic energies of 10–50 keV. During the recovery phase, plume hiss in the afternoon sector can have a comparable or stronger effect than chorus, with peak fluxes of ∼1 erg/cm2/s and characteristic energies between 10 and 200 keV. This study highlights the importance of integrating physics‐based and deep learning approaches to model the complex dynamics of electron precipitation driven by whistler mode waves. 
    more » « less
  3. Abstract The work presented here introduces a new data set for inclusion of energetic electron precipitation (EEP) in climate model simulations. Measurements made by the medium energy proton and electron detector (MEPED) instruments onboard both the Polar Orbiting Environmental Satellites and the European Space Agency Meteorological Operational satellites are used to create global maps of precipitating electron fluxes. Unlike most previous data sets, the electron fluxes are computed using both the 0° and 90° MEPED detectors. Conversion of observed, broadband electron count rates to differential spectral fluxes uses a linear combination of analytical functions instead of a single function. Two dimensional maps of electron spectral flux are created using Delaunay triangulation to account for the relatively sparse nature of the MEPED sampling. This improves on previous studies that use a 1D interpolation over magnetic local time or L‐shell zonal averaging of the MEPED data. A Whole Atmosphere Community Climate Model (WACCM) simulation of the southern hemisphere 2003 winter using the new precipitating electron data set is shown to agree more closely with observations of odd nitrogen than WACCM simulations using other MEPED‐based electron data sets. Simulated EEP‐induced odd nitrogen increases led to ozone losses of more than 15% in the polar stratosphere near 10 hPa in September of 2003. 
    more » « less
  4. null (Ed.)
    We report on the behavior of precipitating and backscattered energetic electrons as function of latitude, energy and pitch-angle across a wide range of local times. ELFIN’s two spinning satellites from a 450km altitude, near-polar orbit, permit excellent resolution of pitch-angles (22.5deg) well within the loss cone, and allow clear discrimination of locally trapped and field-aligned electrons between 50keV and 5MeV (dE/E ~ 40%). We find that at times of low precipitation (fluxes <10% of trapped) both precipitating and backscattered electrons are present and their ratio is close to 1. This is likely because atmospheric scattering contributes to loss-cone filling, both up and down the field line. When precipitation is significant (flux >10% of trapped, up to an energy Epmax) it dominates the upward-to-downward flux ratio at energies as low as 0.2 times Epmax, rendering that ratio very low (<10%). However, below ~0.2Epmax, as well as above Epmax, backscattering is a significant fraction of precipitation. We discuss the possible reasons for this backscatter. We also discuss the implications of our findings for electron losses from the radiation belts, for modeling atmospheric effects of energetic electron precipitation and for populating the magnetosphere with field-aligned energetic electrons. 
    more » « less
  5. Abstract Whistler mode chorus waves can scatter plasma sheet electrons into the loss cone and produce the Earth's diffuse aurora. Van Allen Probes observed plasma sheet electron injections and intense chorus waves on 24 November 2012. We use quasilinear theory to calculate the precipitating electron fluxes, demonstrating that the chorus waves could lead to high differential energy fluxes of precipitating electrons with characteristic energies of 10–30 keV. Using this method, we calculate the precipitating electron flux from 2012 to 2019 when the Van Allen Probes were near the magnetic equator and perform global surveys of electron precipitation under different geomagnetic conditions. The most significant electron precipitation due to chorus is found from the nightside to dawn sectors over 4 < L < 6.5. The average total precipitating energy flux is enhanced during disturbed conditions, with time‐averaged values reaching ~3–10 erg/cm2/s whenAE ≥ 500 nT. 
    more » « less