Abstract Located at northern latitudes and subject to large seasonal temperature fluctuations, boreal forests are sensitive to the changing climate, with evidence for both increasing and decreasing productivity, depending upon conditions. Optical remote sensing of vegetation indices based on spectral reflectance offers a means of monitoring vegetation photosynthetic activity and provides a powerful tool for observing how boreal forests respond to changing environmental conditions. Reflectance‐based remotely sensed optical signals at northern latitude or high‐altitude regions are readily confounded by snow coverage, hampering applications of satellite‐based vegetation indices in tracking vegetation productivity at large scales. Unraveling the effects of snow can be challenging from satellite data, particularly when validation data are lacking. In this study, we established an experimental system in Alberta, Canada including six boreal tree species, both evergreen and deciduous, to evaluate the confounding effects of snow on three vegetation indices: the normalized difference vegetation index (NDVI), the photochemical reflectance index (PRI), and the chlorophyll/carotenoid index (CCI), all used in tracking vegetation productivity for boreal forests. Our results revealed substantial impacts of snow on canopy reflectance and vegetation indices, expressed as increased albedo, decreased NDVI values and increased PRI and CCI values. These effects varied among species and functional groups (evergreen and deciduous) and different vegetation indices were affected differently, indicating contradictory, confounding effects of snow on these indices. In addition to snow effects, we evaluated the contribution of deciduous trees to vegetation indices in mixed stands of evergreen and deciduous species, which contribute to the observed relationship between greenness‐based indices and ecosystem productivity of many evergreen‐dominated forests that contain a deciduous component. Our results demonstrate confounding and interacting effects of snow and vegetation type on vegetation indices and illustrate the importance of explicitly considering snow effects in any global‐scale photosynthesis monitoring efforts using remotely sensed vegetation indices. 
                        more » 
                        « less   
                    
                            
                            Tower‐Based Remote Sensing Reveals Mechanisms Behind a Two‐phased Spring Transition in a Mixed‐Species Boreal Forest
                        
                    
    
            Abstract The boreal forest is a major contributor to the global climate system, therefore, reducing uncertainties in how the forest will respond to a changing climate is critical. One source of uncertainty is the timing and drivers of the spring transition. Remote sensing can provide important information on this transition, but persistent foliage greenness, seasonal snow cover, and a high prevalence of mixed forest stands (both deciduous and evergreen species) complicate interpretation of these signals. We collected tower‐based remotely sensed data (reflectance‐based vegetation indices and Solar‐Induced Chlorophyll Fluorescence [SIF]), stem radius measurements, gross primary productivity, and environmental conditions in a boreal mixed forest stand. Evaluation of this data set shows a two‐phased spring transition. The first phase is the reactivation of photosynthesis and transpiration in evergreens, marked by an increase in relative SIF, and is triggered by thawed stems, warm air temperatures, and increased available soil moisture. The second phase is a reduction in bulk photoprotective pigments in evergreens, marked by an increase in the Chlorophyll‐Carotenoid Index. Deciduous leaf‐out occurs during this phase, marked by an increase in all remotely sensed metrics. The second phase is controlled by soil thaw. Our results demonstrate that remote sensing metrics can be used to detect specific physiological changes in boreal tree species during the spring transition. The two‐phased transition explains inconsistencies in remote sensing estimates of the timing and drivers of spring recovery. Our results imply that satellite‐based observations will improve by using a combination of vegetation indices and SIF, along with species distribution information. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10375215
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 126
- Issue:
- 5
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Remote sensing is a powerful tool for understanding and scaling measurements of plant carbon uptake via photosynthesis, gross primary productivity (GPP), across space and time. The success of remote sensing measurements can be attributed to their ability to capture valuable information on plant structure (physical) and function (physiological), both of which impact GPP. However, no single remote sensing measure provides a universal constraint on GPP and the relationships between remote sensing measurements and GPP are often site specific, thereby limiting broader usefulness and neglecting important nuances in these signals. Improvements must be made in how we connect remotely sensed measurements to GPP, particularly in boreal ecosystems which have been traditionally challenging to study with remote sensing. In this paper we improve GPP prediction by using random forest models as a quantitative framework that incorporates physical and physiological information provided by solar-induced fluorescence (SIF) and vegetation indices (VIs). We analyze 2.5 years of tower-based remote sensing data (SIF and VIs) across two field locations at the northern and southern ends of the North American boreal forest. We find (a) remotely sensed products contain information relevant for understanding GPP dynamics, (b) random forest models capture quantitative SIF, GPP, and light availability relationships, and (c) combining SIF and VIs in a random forest model outperforms traditional parameterizations of GPP based on SIF alone. Our new method for predicting GPP based on SIF and VIs improves our ability to quantify terrestrial carbon exchange in boreal ecosystems and has the potential for applications in other biomes.more » « less
- 
            Abstract The seasonal timing and magnitude of photosynthesis in evergreen needleleaf forests (ENFs) has major implications for the carbon cycle and is increasingly sensitive to changing climate. Earlier spring photosynthesis can increase carbon uptake over the growing season or cause early water reserve depletion that leads to premature cessation and increased carbon loss. Determining the start and the end of the growing season in ENFs is challenging due to a lack of field measurements and difficulty in interpreting satellite data, which are impacted by snow and cloud cover, and the pervasive “greenness” of these systems. We combine continuous needle‐scale chlorophyll fluorescence measurements with tower‐based remote sensing and gross primary productivity (GPP) estimates at three ENF sites across a latitudinal gradient (Colorado, Saskatchewan, Alaska) to link physiological changes with remote sensing signals during transition seasons. We derive a theoretical framework for observations of solar‐induced chlorophyll fluorescence (SIF) and solar intensity‐normalized SIF (SIFrelative) under snow‐covered conditions, and show decreased sensitivity compared with reflectance data (~20% reduction in measured SIF vs. ~60% reduction in near‐infrared vegetation index [NIRv] under 50% snow cover). Needle‐scale fluorescence and photochemistry strongly correlated (r2 = 0.74 in Colorado, 0.70 in Alaska) and showed good agreement on the timing and magnitude of seasonal transitions. We demonstrate that this can be scaled to the site level with tower‐based estimates of LUEPand SIFrelativewhich were well correlated across all sites (r2 = 0.70 in Colorado, 0.53 in Saskatchewan, 0.49 in Alaska). These independent, temporally continuous datasets confirm an increase in physiological activity prior to snowmelt across all three evergreen forests. This suggests that data‐driven and process‐based carbon cycle models which assume negligible physiological activity prior to snowmelt are inherently flawed, and underscores the utility of SIF data for tracking phenological events. Our research probes the spectral biology of evergreen forests and highlights spectral methods that can be applied in other ecosystems.more » « less
- 
            Abstract Solar‐induced chlorophyll fluorescence (SIF) is a remotely sensed optical signal emitted during the light reactions of photosynthesis. The past two decades have witnessed an explosion in availability of SIF data at increasingly higher spatial and temporal resolutions, sparking applications in diverse research sectors (e.g., ecology, agriculture, hydrology, climate, and socioeconomics). These applications must deal with complexities caused by tremendous variations in scale and the impacts of interacting and superimposing plant physiology and three‐dimensional vegetation structure on the emission and scattering of SIF. At present, these complexities have not been overcome. To advance future research, the two companion reviews aim to (1) develop an analytical framework for inferring terrestrial vegetation structures and function that are tied to SIF emission, (2) synthesize progress and identify challenges in SIF research via the lens of multi‐sector applications, and (3) map out actionable solutions to tackle these challenges and offer our vision for research priorities over the next 5–10 years based on the proposed analytical framework. This paper is the first of the two companion reviews, and theory oriented. It introduces a theoretically rigorous yet practically applicable analytical framework. Guided by this framework, we offer theoretical perspectives on three overarching questions: (1)The forward (mechanism) question—How are the dynamics of SIF affected by terrestrial ecosystem structure and function? (2)The inference question: What aspects of terrestrial ecosystem structure, function, and service can be reliably inferred from remotely sensed SIF and how? (3)The innovation question: What innovations are needed to realize the full potential of SIF remote sensing for real‐world applications under climate change? The analytical framework elucidates that process complexity must be appreciated in inferring ecosystem structure and function from the observed SIF; this framework can serve as a diagnosis and inference tool for versatile applications across diverse spatial and temporal scales.more » « less
- 
            Abstract Purpose of ReviewTerrestrial ecosystems in the Arctic-Boreal region play a crucial role in the global carbon cycle as a carbon sink. However, rapid warming in this region induces uncertainties regarding the future net carbon exchange between land and the atmosphere, highlighting the need for better monitoring of the carbon fluxes. Solar-Induced chlorophyll Fluorescence (SIF), a good proxy for vegetation CO$$^{2}$$ uptake, has been broadly utilized to assess vegetation dynamics and carbon uptake at the global scale. However, the full potential and limitations of SIF in the Arctic-Boreal region have not been explored. Therefore, this review aims to provide a comprehensive summary of the latest insights into Arctic-Boreal carbon uptake through SIF analyses, underscoring the advances and challenges of SIF in solving emergent unknowns in this region. Additionally, this review proposes applications of SIF across scales in support of other observational and modeling platforms for better understanding Arctic-Boreal vegetation dynamics and carbon fluxes. Recent FindingsCross-scale SIF measurements complement each other, offering valuable perspectives on Arctic-Boreal ecosystems, such as vegetation phenology, carbon uptake, carbon-water coupling, and ecosystem responses to disturbances. By incorporating SIF into land surface modeling, the understanding of Arctic-Boreal changes and their climate drivers can be mechanistically enhanced, providing critical insights into the changes of Arctic-Boreal ecosystems under global warming. SummaryWhile SIF measurements are more abundant and with finer spatiotemporal resolutions, it is important to note that the coverage of these measurements is still limited and uneven in the Arctic-Boreal region. To address this limitation and further advance our understanding of the Arctic-Boreal carbon cycle, this review advocates for fostering a SIF network providing long-term and continuous measurements across spatial scales. Simultaneously measuring SIF and other environmental variables in the context of a multi-modal sensing system can help us comprehensively characterize Arctic-Boreal ecosystems with spatial details in land surface models, ultimately contributing to more robust climate projections.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
