We report on the mountain top observation of three terrestrial gamma‐ray flashes (TGFs) that occurred during the summer storm season of 2021. To our knowledge, these are the first TGFs observed in a mountaintop environment and the first published European TGFs observed from the ground. A gamma‐ray sensitive detector was located at the base of the Säntis Tower in Switzerland and observed three unique TGF events with coincident radio sferic data characteristic of TGFs seen from space. We will show an example of a “slow pulse” radio signature (Cummer et al., 2011,
Modeling convective air movement in unsaturated porous media requires appropriate characterization of the relative air permeability (RAP). Adopting Assouline et al. (1998,
- PAR ID:
- 10375244
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 55
- Issue:
- 11
- ISSN:
- 0043-1397
- Page Range / eLocation ID:
- p. 10037-10049
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract https://doi.org/10.1029/2011GL048099 ; Lu et al., 2011,https://doi.org/10.1029/2010JA016141 ; Pu et al., 2019,https://doi.org/10.1029/2019GL082743 ; Pu et al., 2020,https://doi.org/10.1029/2020GL089427 ), a −EIP (Lyu et al., 2016,https://doi.org/10.1002/2016GL070154 ; Lyu et al., 2021,https://doi.org/10.1029/2021GL093627 ; Wada et al., 2020,https://doi.org/10.1029/2019JD031730 ), and a double peak TGF associated with an extraordinarily powerful and complicated positive‐polarity sferic, where each TGF peak is possibly preceded by a short burst of stepped leader emission. -
Abstract The polar
F region ionosphere frequently exhibits sporadic variability (e.g., Meek, 1949,https://doi.org/10.1029/JZ054i004p00339 ; Hill, 1963,https://doi.org/10.1175/1520‐0469(1963)020<0492:SEOLII>2.0.CO;2 ). Recent satellite data analysis (Noja et al., 2013,https://doi.org/10.1002/rds.20033 ; Chartier et al., 2018,https://doi.org/10.1002/2017JA024811 ) showed that the high‐latitudeF region ionosphere exhibits sporadic enhancements more frequently in January than in July in both the northern and southern hemispheres. The same pattern has been seen in statistics of the degradation and total loss of GPS service onboard low‐Earth orbit satellites (Xiong et al. 2018,https://doi.org/10.5194/angeo‐36‐679‐2018 ). Here, we confirm the existence of this annual pattern using ground GPS‐based images of TEC from the MIDAS algorithm. Images covering January and July 2014 confirm that the high‐latitude (>70 MLAT)F region exhibits a substantially larger range of values in January than in July in both the northern and southern hemispheres. The range of TEC values observed in the polar caps is 38–57 TECU (north‐south) in January versus 25–37 TECU in July. First‐principle modeling using SAMI3 reproduces this pattern, and indicates that it is caused by an asymmetry in plasma levels (30% higher in January than in July across both polar caps), as well as 17% longer O+plasma lifetimes in northern hemisphere winter, compared to southern hemisphere winter. -
Abstract Zhang (2019,
https://doi.org/10.1002/wrcr.v54.4 ) criticizes several of the assumptions and parameter choices of the model of Kuil et al. (2018,https://doi.org/10.1002/2017WR021420 ) and claims that, due to an inconsistency in the irrigation equation, the key findings should be interpreted with much caution. We address each of the comments and show that the conclusions of Kuil et al. (2018,https://doi.org/10.1002/2017WR021420 ) remain fully valid. -
Abstract The objective of this comment is to correct two sets of statements in Litwin et al. (2022,
https://doi.org/10.1029/2021JF006239 ), which consider our research work (Bonetti et al., 2018,https://doi.org/10.1098/rspa.2017.0693 ; Bonetti et al., 2020,https://doi.org/10.1073/pnas.1911817117 ). We clarify here that (a) the specific contributing area is defined in the limit of an infinitesimal contour length instead of the product of a reference contour width (Bonetti et al., 2018,https://doi.org/10.1098/rspa.2017.0693 ), and (b) not all solutions obtained from the minimalist landscape evolution model of Bonetti et al. (2020,https://doi.org/10.1073/pnas.1911817117 ) are rescaled copies of each other. We take this opportunity to demonstrate that the boundary conditions impact the obtained solutions, which has not been considered in the dimensional analysis of Litwin et al. (2022,https://doi.org/10.1029/2021JF006239 ). We clarify this point by using dimensional analysis and numerical simulations for a square domain, where only one horizontal length scale (the side lengthl ) enters the physical law. -
Abstract Following the reanalysis of individual experimental runs of some widely cited studies (Jain et al., 2018,
https://doi.org/10.1002/2017JB014847 ), we revisit the global data analysis of Korenaga and Karato (2008,https://doi.org/10.1029/2007JB005100 ) with a significantly improved version of their Markov chain Monte Carlo inversion. Their algorithm, previously corrected by Mullet et al. () to minimize potential parameter bias, is further modified here to estimate more efficiently interrun biases in global data sets. Using the refined Markov chain Monte Carlo inversion technique, we simultaneously analyze experimental data on the deformation of olivine aggregates compiled from different studies. Realistic composite rheological models, including both diffusion and dislocation creep, are adopted, and the role of dislocation‐accommodated grain boundary sliding is also investigated. Furthermore, the influence of interrun biases on inversion results is studied using experimental and synthetic data. Our analysis shows that existing data can tightly constrain the grain‐size exponent for diffusion creep at ∼2, which is different from the value commonly assumed ( p = 3). Different data sets and model assumptions, however, yield nonoverlapping estimates on other flow‐law parameters, and the flow‐law parameters for grain boundary sliding are poorly resolved in most cases. We thus provide a few plausible candidate flow‐law models for olivine rheology to facilitate future geodynamic modeling. The availability of more data that explore a wider range of experimental conditions, especially higher pressures, is essential to improve our understanding of upper mantle rheology.