Abstract We present multiwavelength characterization of 65 high-mass X-ray binary (HMXB) candidates in M33. We use the Chandra ACIS survey of M33 (ChASeM33) catalog to select hard X-ray point sources that are spatially coincident with UV-bright point-source optical counterparts in the Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region catalog, which covers the inner disk of M33 at near-IR, optical, and near-UV wavelengths. We perform spectral energy distribution fitting on multiband photometry for each point-source optical counterpart to measure its physical properties including mass, temperature, luminosity, and radius. We find that the majority of the HMXB companion star candidates are likely B-type main-sequence stars, suggesting that the HMXB population of M33 is dominated by Be X-ray binaries (Be-XRBs), as is seen in other Local Group galaxies. We use spatially resolved recent star formation history maps of M33 to measure the age distribution of the HMXB candidate sample and the HMXB production rate for M33. We find a bimodal distribution for the HMXB production rate over the last 80 Myr, with a peak at ∼10 and ∼40 Myr, which match theoretical formation timescales for the most massive HMXBs and Be-XRBs, respectively. We measure an HMXB production rate of 107–136 HMXBs/(M⊙yr−1) over the last 50 Myr and 150–199 HMXBs/(M⊙yr−1) over the last 80 Myr. For sources with compact object classifications from overlapping NuSTAR observations, we find a preference for giant/supergiant companion stars in black hole HMXBs and main-sequence companion stars in neutron star HMXBs. 
                        more » 
                        « less   
                    
                            
                            The Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region (PHATTER). II. The Spatially Resolved Recent Star Formation History of M33
                        
                    
    
            Abstract We measure the spatially resolved recent star formation history (SFH) of M33 using optical images taken with the Hubble Space Telescope as part of the Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region (PHATTER) survey. The area covered by the observations used in this analysis covers a de-projected area of ∼38 kpc2and extends to ∼3.5 and ∼2 kpc from the center of M33 along the major and semimajor axes, respectively. We divide the PHATTER optical survey into 2005 regions that measure 24 arcsec, ∼100 pc, on a side and fit color–magnitude diagrams for each region individually to measure the spatially resolved SFH of M33 within the PHATTER footprint. There are significant fluctuations in the SFH on small spatial scales and also galaxy-wide scales that we measure back to about 630 Myr ago. We observe a more flocculent spiral structure in stellar populations younger than about 80 Myr, while the structure of the older stellar populations is dominated by two spiral arms. We also observe a bar in the center of M33, which dominates at ages older than about 80 Myr. Finally, we find that the mean star formation rate (SFR) over the last 100 Myr within the PHATTER footprint is 0.32 ± 0.02 M⊙yr−1. We measure a current SFR (over the last 10 Myr) of 0.20 ± 0.03 M⊙yr−1. This SFR is slightly higher than previous measurements from broadband estimates, when scaled to account for the fraction of the D25 area covered by the PHATTER survey footprint. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2102721
- PAR ID:
- 10375285
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 934
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 76
- Size(s):
- Article No. 76
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Using Hubble Space Telescope imaging of the resolved stellar population of KK 242 = NGC 6503-d1 =PGC 4689184, we measure the distance to the galaxy to be 6.46 ± 0.32 Mpc and find that KK 242 is a satellite of the low-mass spiral galaxy NGC 6503 located on the edge of the Local Void. Observations with the Karl G. Jansky Very Large Array show signs of a very faint H i signal at the position of KK 242 within a velocity range of V hel = −80 ± 10 km s −1 . This velocity range is severely contaminated by H i emission from the Milky Way and from NGC 6503. The dwarf galaxy is classified as the transition type, dIrr/dSph, with a total H i mass of < 10 6 M ⊙ and a star formation rate SFR(H α ) = −4.82 dex ( M ⊙ yr −1 ). Being at a projected separation of 31 kpc with a radial velocity difference of—105 km s −1 relative to NGC 6503, KK 242 gives an estimate of the halo mass of the spiral galaxy to be log ( M / M ⊙ ) = 11.6. Besides NGC 6503, there are eight more detached low-luminosity spiral galaxies in the Local Volume: M33, NGC 2403, NGC 7793, NGC 1313, NGC 4236, NGC 5068, NGC 4656, and NGC 7640, from whose small satellites we have estimated the average total mass of the host galaxies and their average total mass-to- K -band-luminosity 〈 M T / M ⊙ 〉 = (3.46 ± 0.84) × 10 11 and (58 ± 19) M ⊙ / L ⊙ , respectively.more » « less
- 
            Abstract Using resolved optical stellar photometry from the Panchromatic Hubble Andromeda Treasury Triangulum Extended Region survey, we measured the star formation history near the position of 85 supernova remnants (SNRs) in M33. We constrained the progenitor masses for 60 of these SNRs, finding that the remaining 25 remnants had no local star formation in the last 56 Myr, consistent with core-collapse supernovae, making them potential Type Ia candidates. We then infer a progenitor mass distribution from the age distribution, assuming single star evolution. We find that the progenitor mass distribution is consistent with being drawn from a power law with an index of − 2.9 − 1.0 + 1.2 . Additionally, we infer a minimum progenitor mass of 7.1 − 0.2 + 0.1 M ⊙ from this sample, consistent with several previous studies, providing further evidence that stars with ages older than the lifetimes of single 8 M ⊙ stars are producing supernovae.more » « less
- 
            The Triangulum Extended (TREX) Survey: The Stellar Disk Dynamics of M33 as a Function of Stellar AgeAbstract Triangulum (M33) is a low-mass, relatively undisturbed spiral galaxy that offers a new regime in which to test models of dynamical heating. In spite of its proximity, M33's dynamical heating history has not yet been well-constrained. In this work, we present the TREX Survey, the largest stellar spectroscopic survey across the disk of M33. We present the stellar disk kinematics as a function of age to study the past and ongoing dynamical heating of M33. We measure line-of-sight velocities for ∼4500 disk stars. Using a subset, we divide the stars into broad age bins using Hubble Space Telescope and Canada–France–Hawaii Telescope photometric catalogs: massive main-sequence stars and helium-burning stars (∼80 Myr), intermediate-mass asymptotic branch stars (∼1 Gyr), and low-mass red giant branch stars (∼4 Gyr). We compare the stellar disk dynamics to that of the gas using existing Hi, CO, and Hαkinematics. We find that the disk of M33 has relatively low-velocity dispersion (∼16 km s−1), and unlike in the Milky Way and Andromeda galaxies, there is no strong trend in velocity dispersion as a function of stellar age. The youngest disk stars are as dynamically hot as the oldest disk stars and are dynamically hotter than predicted by most M33-like low-mass simulated analogs in Illustris. The velocity dispersion of the young stars is highly structured, with the large velocity dispersion fairly localized. The cause of this high-velocity dispersion is not evident from the observations and simulated analogs presented here.more » « less
- 
            Abstract Dual quasars—two active supermassive black holes at galactic scales—represent crucial objects for studying the impact of galaxy mergers and quasar activity on the star formation rate (SFR) within their host galaxies, particularly at cosmic noon when SFR peaks. We present JWST/MIRI mid-infrared integral field spectroscopy of J074922.96+225511.7, a dual quasar with a projected separation of 3.8 kpc at a redshiftz= 2.17. We detect spatially extended [Feii] 5.34μm and polycyclic aromatic hydrocarbon (PAH) 3.3μm emissions from the star formation activity in its host galaxy. We derive the SFR of 103.0±0.2M⊙yr−1using PAH 3.3μm, which is 5 times higher than that derived from the knee of the infrared luminosity function for galaxies atz∼ 2. While the SFR of J0749+2255 agrees with that of star-forming galaxies of comparable stellar mass at the same redshifts, its molecular gas content falls short of expectations based on the molecular Kennicutt–Schmidt law. This discrepancy may result from molecular gas depletion due to the longer elevated stage of star formation, even after the molecular gas reservoir is depleted. We do not observe any quasar-driven outflow that impacts PAH and [Feii] in the host galaxy based on the spatially resolved maps. From the expected flux in PAH-based star formation, the [Feii] line likely originates from the star-forming regions in the host galaxy. Our study highlights the extreme stardust nature of J0749+2255, indicating a potential connection between the dual quasar phase and intense star formation activities.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
