skip to main content

Title: Generalized Substorm Current Wedge Model: Two Types of Dipolarizations in the Inner Magnetosphere

The present study investigates dipolarization signatures in the inner magnetosphere using sharp geosynchronous dipolarizations as a reference. The results are summarized as follows: (1) The region of sharp and structured dipolarizations expands earthward while dipolarizations are sustained at geosynchronous orbit; (2) within 5REfrom Earth, dipolarization signatures are often smooth and gradual, resembling midlatitude positive bays, and they start simultaneously with substorm onsets; (3) off the equator (>0.5RE), sharp dipolarizations often take place before geosynchronous dipolarizations. These results can be explained by a model current system with R1‐sense and R2‐sense current wedges (R1CW and R2CW) if (a) the R1CW, which is located outside, is more intense than the R2CW in total current, (b) the R1CW stays outside of geosynchronous orbit, and (c) the R2CW moves earthward. The model suggests that the region of sharp dipolarizations is confined between the two current wedges, and it expands earthward as the R2CW moves earthward (Result 1). Sufficiently earthward of the R2CW, the remote effect of the R1CW dominates that of the R2CW, and accordingly, magnetic disturbances resemble midlatitude positive bays (Result 2). Since the timing of sharp dipolarizations is determined by the passage of the R2CW, they take place earlier for outer flux tubes. Away from the magnetic equator, sharp dipolarizations can precede geosynchronous dipolarizations especially if the magnetic configuration is stretched (Result 3). Thus, this double‐current wedge model explains the variability of dipolarization signatures at different distances, and it may be regarded as a generalized substorm current wedge model.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper addresses the question of the contribution of azimuthally localized flow channels and magnetic field dipolarizations embedded in them in the global dipolarization of the inner magnetosphere during substorms. We employ the high‐resolution Lyon‐Fedder‐Mobarry global magnetosphere magnetohydrodynamic model and simulate an isolated substorm event, which was observed by the geostationary satellites and by the Magnetospheric Multiscale spacecraft. The results of our simulations reveal that plasma sheet flow channels (bursty bulk flows, BBFs) and elementary dipolarizations (dipolarization fronts, DFs) occur in the growth phase of the substorm but are rare and do not penetrate to the geosynchronous orbit. The substorm onset is characterized by an abrupt increase in the occurrence and intensity of BBFs/DFs, which penetrate well earthward of the geosynchronous orbit during the expansion phase. These azimuthally localized structures are solely responsible for the global (in terms of the magnetic local time) dipolarization of the inner magnetosphere toward the end of the substorm expansion. Comparison with the geostationary satellites and Magnetospheric Multiscale data shows that the properties of the BBFs/DFs in the simulation are similar to those observed, which gives credence to the above results. Additionally, the simulation reveals many previously observed signatures of BBFs and DFs, including overshoots and oscillations around their equilibrium position, strong rebounds and vortical tailward flows, and the corresponding plasma sheet expansion and thinning.

    more » « less
  2. Abstract

    Four closely located satellites at and inside geosynchronous orbit (GEO) provided a great opportunity to study the dynamical evolution and spatial scale of premidnight energetic particle injections inside GEO during a moderate substorm on 23 December 2016. Just following the substorm onset, the four spacecraft, a LANL satellite at GEO, the two Van Allen Probes (also called “RBSP”) at ~5.8RE, and a THEMIS satellite at ~5.3RE, observed substorm‐related particle injections and local dipolarizations near the central meridian (~22 MLT) of a wedge‐like current system. The large‐scale evolution of the electron and ion (H, He, and O) injections was almost identical at the two RBSP spacecraft with ~0.5REapart. However, the initial short‐timescale particle injections exhibited a striking difference between RBSP‐A and ‐B: RBSP‐B observed an energy dispersionless injection which occurred concurrently with a transient, strong dipolarization front (DF) with a peak‐to‐peak amplitude of ~25 nT over ~25 s; RBSP‐A measured a dispersed/weaker injection with no corresponding DF. The spatiotemporally localized DF was accompanied by an impulsive, westward electric field (~20 mV m−1). The fast, impulsiveE × Bdrift caused the radial transport of the electron and ion injection regions from GEO to ~5.8RE. The penetrating DF fields significantly altered the rapid energy‐ and pitch angle‐dependent flux changes of the electrons and the H and He ions inside GEO. Such flux distributions could reflect the transient DF‐related particle acceleration and/or transport processes occurring inside GEO. In contrast, O ions were little affected by the DF fields.

    more » « less
  3. Abstract

    The injection region's formation, scale size, and propagation direction have been debated throughout the years, with new questions arising with increased plasma sheet observations by missions like Cluster and THEMIS. How do temporally and spatially small‐scale injections relate to the larger injections historically observed at geosynchronous orbit? How to account for opposing propagation directions—earthward, tailward, and azimuthal—observed by different studies? To address these questions, we used a combination of multisatellite and ground‐based observations to knit together a cohesive story explaining injection formation, propagation, and differing spatial scales and timescales. We used a case study to put statistics into context. First, fast earthward flows with embedded small‐scale dipolarizing flux bundles transport both magnetic flux and energetic particles earthward, resulting in minutes‐long injection signatures. Next, a large‐scale injection propagates azimuthally and poleward/tailward, observed in situ as enhanced flux and on the ground in the riometer signal. The large‐scale dipolarization propagates in a similar direction and speed as the large‐scale electron injection. We suggest small‐scale injections result from earthward‐propagating, small‐scale dipolarizing flux bundles, which rapidly contribute to the large‐scale dipolarization. We suggest the large‐scale dipolarization is the source of the large‐scale electron injection region, such that as dipolarization expands, so does the injection. The >90‐keV ion flux increased and decreased with the plasma flow, which died at the satellites as global dipolarization engulfed them. We suggest the ion injection region at these energies in the plasma sheet is better organized by the plasma flow.

    more » « less
  4. Abstract

    Bursty bulk flows and dipolarizing flux bundles within them play an important role in the transport of mass, energy, and magnetic flux in the magnetotail. On the basis of an magnetohydrodynamic simulation of magnetotail reconnection and dipolarization, we investigate the contribution of individual bursts and flux transport events to the buildup of the substorm current wedge, as well as to the earthward transport of magnetic flux and energy. Individual events, defined by increased flow speed (flow bursts), increased cross‐tail electric field, or increased (or increasing) magnetic fieldBz, are found to be closely related but not identical. Multiple individual magnetic flux transport events collectively contribute to tailward and azimuthal expansion of dipolarization in the inner tail and to an increase of total field‐aligned currents toward or away from the ionosphere. In contrast, the current closure across midnight, estimated from the surface currents at the inner (earthward) boundary of the simulation box, was found to remain only a fraction (∼10% or 0.2 MA) of the total Region 1 current into to ionosphere. The simulation showed dipolarization everywhere earthward of the near‐Earth x‐line, amounting to ∼2.3 ×108 Wb, commensurate with substorm estimates. This can appear at a satellite in various ways, through either classical earthward transport and pileup (outward moving accumulation) or lateral (azimuthal) or tailward (vortical or recoiled) convective motion of dipolarized flux tubes, or a combination of these.

    more » « less
  5. Abstract

    The expansion phase of auroral substorms is characterized by the formation of an auroral bulge, and it is generally considered that a single bulge forms following each substorm onset. However, we find that occasionally two auroral intensifications takes place close in time but apart in space leading to the formation of double auroral bulges, which later merge into one large bulge. We report three such events. In those events the westward auroral electrojet intensified in each auroral bulge, and geosynchronous magnetic field dipolarized in the same sector. It appears that two substorms took place simultaneously, and each substorm was accompanied by the formation of its own substorm current wedge system. This finding strongly suggests that the initiation of auroral substorms is a local process, and there is no global reference frame for their development. For example, ideas such as (i) the auroralbreakup takes place in the vicinity of the Harang reversal and (ii) the westward traveling surge maps to the interface between the plasma sheet and low‐latitude boundary layer, do not necessarily hold for every substorm. Even if those ideas may be suggestive of causal magnetospheric processes, the reference structures themselves are probably not essential. It is also found that despite the formation of two distinct auroral bulges, the overall magnetosphere‐ionosphere current system is represented by one globally coherent system, and we suggest that its structure is determined by the relative intensities and locations of the two substorm current wedges that correspond to the individual auroral bulges.

    more » « less