skip to main content


Title: Exospheric Neutral Hydrogen Density at the Nominal 10  R E Subsolar Point Deduced From XMM‐Newton X‐Ray Observations
Abstract

We investigate the exospheric neutral density near the subsolar magnetopause, assumingXgse = 10 REas its typical location, to support the upcoming Solar wind‐Magnetosphere‐Ionosphere Link Explorer that will visualize the Earth's magnetosheath and cusps in soft X‐rays. Neutral hydrogen density is a key parameter that controls soft X‐ray emission and can be inversely extracted from the soft X‐ray observations. We introduce a unique method to estimate the dayside neutral density by using X‐ray Multi‐Mirror Mission (XMM)‐Newton astrophysics X‐ray observations and Open Geospace Global Circulation Model (OpenGGCM) global magnetosphere‐ionosphere magnetohydrodynamics (MHD) model. On 4 May 2003 and 16 October 2001, the XMM‐Newton line of sight traversed the dayside of the Earth's magnetosheath and observed strong near‐Earth soft X‐ray emission. We simulate these two events using the OpenGGCM model. Although the model tends to produce a spatially thicker magnetosheath than measured, modeled magnetosheath plasma fluxes match well with the in situ observations of Cluster and Geotail. We calculate the neutral densities every thousand seconds by comparing the modeled count rates with the XMM‐Newton rates. The densities are averaged at39.9 ± 8.0 and57.6 ± 8.0 cm−3for the 4 May 2003 and 16 October 2001 events, respectively. Since our MHD tends to underestimate neutral densities due to its thicker magnetosheath, the true neutral density is likely to lie within the upper half of these error bars.

 
more » « less
NSF-PAR ID:
10375288
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
124
Issue:
3
ISSN:
2169-9380
Page Range / eLocation ID:
p. 1612-1624
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Earth's magnetosheath and cusps emit soft X‐rays due to the charge exchange between highly charged solar wind ions and exospheric hydrogen atoms. The Lunar Environment Heliospheric X‐ray Imager and Solar wind Magnetosphere Ionosphere Link Explorer missions are scheduled to image the Earth's dayside magnetosphere system in soft X‐rays to investigate global‐scale magnetopause reconnection modes under varying solar wind conditions. The exospheric neutral hydrogen density distribution, especially the value of this density at the subsolar magnetopause is of particular interest for understanding X‐ray emissions near this boundary. This paper estimates the exospheric density during solar minimum using the X‐ray Multimirror Mission (XMM) astrophysics observatory. We selected an event on 12 November 2008 from the XMM data archive, which detects soft X‐rays of magnetosheath origin while solar wind and interplanetary magnetic field conditions are relatively constant. During the event the location of the magnetopause was measured in situ by the THEMIS mission, thus the location of the solar wind ions responsible for the magnetosheath emission is well constrained by observation. We estimated the exospheric density using the Open Geospace Global Circulation Model (OpenGGCM) and a spherically symmetric exosphere model. The ratio of the magnetosheath plasma flux between the OpenGGCM model and the THEMIS, was nearly 1, which means the magnetohydrodynamic model reasonably reproduces the magnetosheath plasma conditions. The OpenGGCM magnetosheath parameters were used to deconvolve soft X‐rays of exospheric origin from the XMM signal. The lower‐limit of the exospheric density of this solar minimum event is 36.8 ± 11.7 cm−3at 10 REsubsolar location.

     
    more » « less
  2. Abstract

    The LEXI and SMILE missions will provide soft X‐ray images of the Earth's magnetosheath and cusps after their anticipated launch in 2023 and 2024, respectively. The IBEX mission showed the potential of an Energetic Neutral Atom (ENA) instrument to image dayside magnetosheath and cusps, albeit over the long hours required to raster an image with a single pixel imager. Thus, it is timely to discuss the two imaging techniques and relevant science topics. We simulate soft X‐ray and low‐ENA images that might be observed by a virtual spacecraft during two interesting solar wind scenarios: a southward turning of the interplanetary magnetic field and a sudden enhancement of the solar wind dynamic pressure. We employ the OpenGGCM global magnetohydrodynamics model and a simple exospheric neutral density model for these calculations. Both the magnetosheath and the cusps generate strong soft X‐rays and ENA signals that can be used to extract the locations and motions of the bow shock and magnetopause. Magnetopause erosion corresponds closely to the enhancement of dayside reconnection rate obtained from the OpenGGCM model, indicating that images can be used to understand global‐scale magnetopause reconnection. When dayside imagers are installed with high‐ENA inner‐magnetosphere and FUV/UV aurora imagers, we can trace the solar wind energy flow from the bow shock to the magnetosphere and then to the ionosphere in a self‐standing manner without relying upon other observatories. Soft X‐ray and/or ENA imagers can also unveil the dayside exosphere density structure and its response to space weather.

     
    more » « less
  3. Abstract

    Interactions between solar wind ions and neutral hydrogen atoms in Earth's exosphere can lead to the emission of soft X‐rays. Upcoming missions such as SMILE and LEXI aim to use soft X‐ray imaging to study the global structure of the magnetosphere. Although the magnetosheath and dayside magnetopause can often be driven by kinetic physics, it has typically been omitted from fluid simulations used to predict X‐ray emissions. We study the possible results of soft X‐ray imaging using hybrid simulations under quasi‐radial interplanetary magnetic fields, where ion‐ion instabilities drive ultra‐low frequency foreshock waves, leading to turbulence in the magnetosheath, affecting the dynamics of the cusp and magnetopause. We simulate soft X‐ray emission to determine what may be seen by missions such as LEXI, and evaluate the possibility of identifying kinetic structures. While kinetic structures are visible in high‐cadence imaging, current instruments may not have the time resolution to discern kinetic signals.

     
    more » « less
  4. Abstract

    The Sagittarius B2 (Sgr B2) molecular cloud complex is an X-ray reflection nebula whose nonthermal X-ray emissions have continued to decrease since 2001 as it reprocesses one or more past energetic outbursts from the supermassive black hole Sagittarius A* at the Galactic Center. The X-ray reflection model explains the observed time variability of Sgr B2 and provides a window into the luminous evolutionary history of our nearest supermassive black hole. In light of evidence of elevated cosmic particle populations in the Galactic Center, X-rays from Sgr B2 are also of interest as a probe of low-energy (sub-GeV) cosmic rays, which may be responsible for an increasing relative fraction of the nonthermal emission as the contribution from X-ray reflection decreases. Here, we present the most recent NuSTAR and XMM-Newton observations of Sgr B2, from 2018, and we emphasize the Kαfluorescence line of neutral Fe. These 2018 observations reveal small-scale variations within lower-density portions of the complex, including brightening features, yet still enable upper limits on X-rays from low-energy cosmic-ray interactions in Sgr B2. We present Fe Kαline fluxes from cloud regions of different densities, facilitating comparison with models of ambient low-energy cosmic-ray interactions throughout the cloud.

     
    more » « less
  5. Abstract

    Recent studies of Pc5‐band (150–600 s) ultralow frequency waves found that foreshock disturbances can be a driver of dayside compressional waves and field line resonance, which are two typical Pc5 wave modes in the dayside magnetosphere. However, it is difficult to find spatial structure of dayside Pc5 waves using a small number of satellites or ground magnetometers. This study determines 2‐D structure of dayside Pc5 waves and their driver by utilizing coordinated observations by the THEMIS satellites and the all‐sky imager at South Pole during two series of Pc5 waves on 29 June 2008. These Pc5 waves were found to be field line resonances (FLRs) and driven by foreshock disturbances. The ground‐based all‐sky imager at South Pole shows that periodic poleward moving arcs occurred simultaneously with the FLRs near the satellite footprints over ~3°latitude and had the same frequencies as FLRs. This indicates that they are the auroral signature of the FLRs. The azimuthal distribution of the FLRs in the magnetosphere and their north‐south width in the ionosphere were further determined in the 2‐D images. In the first case, the FLRs distribute symmetrically in the prenoon and postnoon regions with out‐of‐phase oscillation as the odd toroidal mode in the equatorial plane. In the second case, the azimuthal wavelengths of the 350–500 s and 300–450 s period waves were ~8.0 and ~5.2 Re in the equatorial plane. It also shows a fine azimuthal structure embedded in the large‐scale arcs, indicating that a high azimuthal wave number (m~ 140) mode wave coupled with the low‐wave number FLRs.

     
    more » « less